論文の概要: PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2406.06521v1
- Date: Mon, 10 Jun 2024 17:59:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 12:39:47.923977
- Title: PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction
- Title(参考訳): PGSR:高忠実表面再構成のための平面型ガウス切削法
- Authors: Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie, Shangjin Zhai, Nan Wang, Haomin Liu, Hujun Bao, Guofeng Zhang,
- Abstract要約: 高忠実表面再構成を実現するために,高速平面型ガウススプラッティング再構成表現(PGSR)を提案する。
次に、大域的幾何精度を維持するために、一視点幾何、多視点測光、幾何正則化を導入する。
提案手法は3DGS法およびNeRF法よりも優れた高忠実度レンダリングと幾何再構成を維持しつつ,高速なトレーニングとレンダリングを実現する。
- 参考スコア(独自算出の注目度): 37.14913599050765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, 3D Gaussian Splatting (3DGS) has attracted widespread attention due to its high-quality rendering, and ultra-fast training and rendering speed. However, due to the unstructured and irregular nature of Gaussian point clouds, it is difficult to guarantee geometric reconstruction accuracy and multi-view consistency simply by relying on image reconstruction loss. Although many studies on surface reconstruction based on 3DGS have emerged recently, the quality of their meshes is generally unsatisfactory. To address this problem, we propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction while ensuring high-quality rendering. Specifically, we first introduce an unbiased depth rendering method, which directly renders the distance from the camera origin to the Gaussian plane and the corresponding normal map based on the Gaussian distribution of the point cloud, and divides the two to obtain the unbiased depth. We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy. We also propose a camera exposure compensation model to cope with scenes with large illumination variations. Experiments on indoor and outdoor scenes show that our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.
- Abstract(参考訳): 近年, 3D Gaussian Splatting (3DGS) が注目されている。
しかし、ガウス点雲の非構造的・不規則な性質のため、画像再構成損失に頼るだけで幾何的再構成精度と多視点整合性を保証することは困難である。
近年, 3DGSに基づく表面再構成の研究が盛んに行われているが, メッシュの質は概ね不満足である。
この問題に対処するために,高速な平面型ガウススプラッティング再構成表現(PGSR)を提案し,高品質なレンダリングを確保しつつ高忠実な表面再構成を実現する。
具体的には、まず、点雲のガウス分布に基づいて、カメラ原点からガウス平面と対応する正規写像への距離を直接描画し、その2つを分割して非バイアス深度を求める非バイアス深度レンダリング手法を提案する。
次に、大域的幾何精度を維持するために、一視点幾何、多視点測光、幾何正則化を導入する。
また,照明変動が大きいシーンに対処するカメラ露出補償モデルを提案する。
室内および屋外のシーンにおける実験により,高忠実度レンダリングと幾何再構成を維持しながら高速なトレーニングとレンダリングを実現し,3DGS法およびNeRF法よりも優れた性能を示した。
関連論文リスト
- GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - 3D Gaussian Splatting for Large-scale Surface Reconstruction from Aerial Images [6.076999957937232]
AGS(Aerial Gaussian Splatting)という,空中多視点ステレオ(MVS)画像を用いた3DGSによる大規模表面再構成手法を提案する。
まず,大規模空中画像に適したデータチャンキング手法を提案する。
次に,レイ・ガウス断面積法を3DGSに統合し,深度情報と正規情報を得る。
論文 参考訳(メタデータ) (2024-08-31T08:17:24Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - VCR-GauS: View Consistent Depth-Normal Regularizer for Gaussian Surface Reconstruction [47.603017811399624]
そこで本研究では,通常のパラメータと他のパラメータを直接結合するDepth-Normal正規化器を提案する。
また,より正確な表面モデリングのために,3次元ガウス多様体のサイズと分布を規則化するための密度化と分割戦略を導入する。
論文 参考訳(メタデータ) (2024-06-09T13:15:43Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。