From Redundancy to Relevance: Enhancing Explainability in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2406.06579v2
- Date: Thu, 13 Jun 2024 10:29:45 GMT
- Title: From Redundancy to Relevance: Enhancing Explainability in Multimodal Large Language Models
- Authors: Xiaofeng Zhang, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao Wang, Chaochen Gu, Hao Tang, Jieping Ye,
- Abstract summary: Black-box design hinders the interpretability of visual-language models.
We introduce the information flow method to visualize the interaction mechanism.
This approach has been validated through experiments across multiple models.
- Score: 34.59056945192777
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, multimodal large language models have exploded with an endless variety, most of the popular Large Vision Language Models (LVLMs) depend on sequential visual representation, where images are converted into hundreds or thousands of tokens before being input into the Large Language Model (LLM) along with language prompts. The black-box design hinders the interpretability of visual-language models, especially regarding more complex reasoning tasks. To explore the interaction process between image and text in complex reasoning tasks, we introduce the information flow method to visualize the interaction mechanism. By analyzing the dynamic flow of the information flow, we find that the information flow appears to converge in the shallow layer. Further investigation revealed a redundancy of the image token in the shallow layer. Consequently, a truncation strategy was introduced to aggregate image tokens within these shallow layers. This approach has been validated through experiments across multiple models, yielding consistent improvements.
Related papers
- Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Bridging Vision and Language Spaces with Assignment Prediction [47.04855334955006]
VLAP is a novel approach that bridges pretrained vision models and large language models (LLMs)
We harness well-established word embeddings to bridge two modality embedding spaces.
VLAP achieves substantial improvements over the previous linear transformation-based approaches.
arXiv Detail & Related papers (2024-04-15T10:04:15Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.