Good Questions Help Zero-Shot Image Reasoning
- URL: http://arxiv.org/abs/2312.01598v2
- Date: Sat, 9 Dec 2023 00:08:46 GMT
- Title: Good Questions Help Zero-Shot Image Reasoning
- Authors: Kaiwen Yang, Tao Shen, Xinmei Tian, Xiubo Geng, Chongyang Tao, Dacheng
Tao, Tianyi Zhou
- Abstract summary: Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
- Score: 110.1671684828904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning the recent large language models (LLMs) with computer vision models
leads to large vision-language models (LVLMs), which have paved the way for
zero-shot image reasoning tasks. However, LVLMs are usually trained on short
high-level captions only referring to sparse focus regions in images. Such a
``tunnel vision'' limits LVLMs to exploring other relevant contexts in complex
scenes. To address this challenge, we introduce Question-Driven Visual
Exploration (QVix), a novel prompting strategy that enhances the exploratory
capabilities of LVLMs in zero-shot reasoning tasks. QVix leverages LLMs' strong
language prior to generate input-exploratory questions with more details than
the original query, guiding LVLMs to explore visual content more
comprehensively and uncover subtle or peripheral details. QVix enables a wider
exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth
in tasks such as visual question answering and visual entailment. Our
evaluations on various challenging zero-shot vision-language benchmarks,
including ScienceQA and fine-grained visual classification, demonstrate that
QVix significantly outperforms existing methods, highlighting its effectiveness
in bridging the gap between complex visual data and LVLMs' exploratory
abilities.
Related papers
- Zero-Shot Visual Reasoning by Vision-Language Models: Benchmarking and Analysis [6.704529554100875]
Vision-language models (VLMs) have shown impressive zero- and few-shot performance on real-world visual question answering benchmarks.
It remains unclear whether a VLM's apparent visual reasoning performance is due to its world knowledge, or due to actual visual reasoning capabilities.
arXiv Detail & Related papers (2024-08-27T14:43:54Z) - IDA-VLM: Towards Movie Understanding via ID-Aware Large Vision-Language Model [52.697180472760635]
This paper explores the potential of character identities memory and recognition across multiple visual scenarios.
We propose visual instruction tuning with ID reference and develop an ID-Aware Large Vision-Language Model, IDA-VLM.
Our research introduces a novel benchmark MM-ID, to examine LVLMs on instance IDs memory and recognition across four dimensions.
arXiv Detail & Related papers (2024-07-10T12:11:59Z) - Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts [65.04791072532106]
We present LoCoVQA, a benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs)
LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts.
This test assesses how well VLMs can ignore irrelevant information when answering queries.
arXiv Detail & Related papers (2024-06-24T17:58:03Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - Filling the Image Information Gap for VQA: Prompting Large Language
Models to Proactively Ask Questions [15.262736501208467]
Large Language Models (LLMs) demonstrate impressive reasoning ability and the maintenance of world knowledge.
As images are invisible to LLMs, researchers convert images to text to engage LLMs into the visual question reasoning procedure.
We design a framework that enables LLMs to proactively ask relevant questions to unveil more details in the image.
arXiv Detail & Related papers (2023-11-20T08:23:39Z) - ViCor: Bridging Visual Understanding and Commonsense Reasoning with Large Language Models [27.5219975853389]
We find that pre-trained vision-and-language models (VLMs) and large language models (LLMs) are good at different kinds of visual commonsense reasoning problems.
For problems where the goal is to infer conclusions beyond image content,VLMs face difficulties, while LLMs, given sufficient visual evidence, can use commonsense to infer the answer well.
arXiv Detail & Related papers (2023-10-09T17:10:35Z) - Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models [59.05769810380928]
Rephrase, Augment and Reason (RepARe) is a gradient-free framework that extracts salient details about the image using the underlying vision-language model.
We show that RepARe can result in a 3.85% (absolute) increase in zero-shot accuracy on VQAv2, 6.41%, and 7.94% points increase on A-OKVQA, and VizWiz respectively.
arXiv Detail & Related papers (2023-10-09T16:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.