Adaptive multiple optimal learning factors for neural network training
- URL: http://arxiv.org/abs/2406.06583v1
- Date: Tue, 4 Jun 2024 21:18:24 GMT
- Title: Adaptive multiple optimal learning factors for neural network training
- Authors: Jeshwanth Challagundla,
- Abstract summary: The proposed Adaptive Multiple Optimal Learning Factors (AMOLF) algorithm dynamically adjusts the number of learning factors based on the error change per multiply.
The thesis also introduces techniques for grouping weights based on the curvature of the objective function and for compressing large Hessian matrices.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This thesis presents a novel approach to neural network training that addresses the challenge of determining the optimal number of learning factors. The proposed Adaptive Multiple Optimal Learning Factors (AMOLF) algorithm dynamically adjusts the number of learning factors based on the error change per multiply, leading to improved training efficiency and accuracy. The thesis also introduces techniques for grouping weights based on the curvature of the objective function and for compressing large Hessian matrices. Experimental results demonstrate the superior performance of AMOLF compared to existing methods like OWO-MOLF and Levenberg-Marquardt.
Related papers
- FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks [4.097623533226476]
We propose the Feature-aware Fusion Correlation Neural Network (FaFCNN), which introduces a feature-aware interaction module and a feature alignment module based on domain adversarial learning.
The experimental results show that training using augmented features obtained by pre-training gradient boosting decision tree yields more performance gains than random-forest based methods.
arXiv Detail & Related papers (2023-07-24T04:23:08Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Linear Constraints Learning for Spiking Neurons [0.0]
We propose a supervised multi-spike learning algorithm which reduces the required number of training iterations.
Experimental results show this method offers better efficiency compared to existing algorithms on the MNIST dataset.
arXiv Detail & Related papers (2021-03-10T13:54:05Z) - Unintended Effects on Adaptive Learning Rate for Training Neural Network
with Output Scale Change [8.020742121274417]
We show that the combination of such a scaling factor and an adaptive learning rate strongly affects the training behavior of the neural network.
Specifically, for some scaling settings, the effect of the adaptive learning rate disappears or is strongly influenced by the scaling factor.
We present a modification of an optimization algorithm and demonstrate remarkable differences between adaptive learning rate optimization and simple gradient descent.
arXiv Detail & Related papers (2021-03-05T04:19:52Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
We propose an adaptive sampling algorithm based on the principle of optimism, and derive theoretical bounds on its performance.
By deriving algorithm independent lower-bounds for a specific class of problems, we show that the performance achieved by our adaptive scheme cannot be improved in general.
arXiv Detail & Related papers (2021-03-01T04:58:27Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.