FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks
- URL: http://arxiv.org/abs/2307.12518v1
- Date: Mon, 24 Jul 2023 04:23:08 GMT
- Title: FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks
- Authors: Menglin Kong, Shaojie Zhao, Juan Cheng, Xingquan Li, Ri Su, Muzhou
Hou, Cong Cao
- Abstract summary: We propose the Feature-aware Fusion Correlation Neural Network (FaFCNN), which introduces a feature-aware interaction module and a feature alignment module based on domain adversarial learning.
The experimental results show that training using augmented features obtained by pre-training gradient boosting decision tree yields more performance gains than random-forest based methods.
- Score: 4.097623533226476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are two fundamental problems in applying deep learning/machine learning
methods to disease classification tasks, one is the insufficient number and
poor quality of training samples; another one is how to effectively fuse
multiple source features and thus train robust classification models. To
address these problems, inspired by the process of human learning knowledge, we
propose the Feature-aware Fusion Correlation Neural Network (FaFCNN), which
introduces a feature-aware interaction module and a feature alignment module
based on domain adversarial learning. This is a general framework for disease
classification, and FaFCNN improves the way existing methods obtain sample
correlation features. The experimental results show that training using
augmented features obtained by pre-training gradient boosting decision tree
yields more performance gains than random-forest based methods. On the
low-quality dataset with a large amount of missing data in our setup, FaFCNN
obtains a consistently optimal performance compared to competitive baselines.
In addition, extensive experiments demonstrate the robustness of the proposed
method and the effectiveness of each component of the model\footnote{Accepted
in IEEE SMC2023}.
Related papers
- Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion [11.689517005768046]
Out-of-distribution samples may exhibit shifts in local or global features compared to the training distribution.
We propose a novel framework, Multitesting-based Layer-wise Out-of-Distribution (OOD) Detection.
Our scheme effectively enhances the performance of out-of-distribution detection when compared to baseline methods.
arXiv Detail & Related papers (2024-03-16T04:35:04Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
Collaborative Filtering (CF) based recommendation methods have been widely studied.
We propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet)
In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network.
arXiv Detail & Related papers (2021-03-10T14:59:23Z) - An in-depth comparison of methods handling mixed-attribute data for
general fuzzy min-max neural network [9.061408029414455]
We will compare and assess three main methods of handling datasets with mixed features.
The experimental results showed that the target and James-Stein are appropriate categorical encoding methods for learning algorithms of GFMM models.
The combination of GFMM neural networks and decision trees is a flexible way to enhance the classification performance of GFMM models on datasets with the mixed features.
arXiv Detail & Related papers (2020-09-01T05:12:22Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.