Language Guided Skill Discovery
- URL: http://arxiv.org/abs/2406.06615v1
- Date: Fri, 7 Jun 2024 04:25:38 GMT
- Title: Language Guided Skill Discovery
- Authors: Seungeun Rho, Laura Smith, Tianyu Li, Sergey Levine, Xue Bin Peng, Sehoon Ha,
- Abstract summary: We introduce Language Guided Skill Discovery (LGSD) to maximize semantic diversity between skills.
LGSD takes user prompts as input and outputs a set of semantically distinctive skills.
We demonstrate that LGSD enables legged robots to visit different user-intended areas on a plane by simply changing the prompt.
- Score: 56.84356022198222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skill discovery methods enable agents to learn diverse emergent behaviors without explicit rewards. To make learned skills useful for unknown downstream tasks, obtaining a semantically diverse repertoire of skills is essential. While some approaches introduce a discriminator to distinguish skills and others aim to increase state coverage, no existing work directly addresses the "semantic diversity" of skills. We hypothesize that leveraging the semantic knowledge of large language models (LLMs) can lead us to improve semantic diversity of resulting behaviors. In this sense, we introduce Language Guided Skill Discovery (LGSD), a skill discovery framework that aims to directly maximize the semantic diversity between skills. LGSD takes user prompts as input and outputs a set of semantically distinctive skills. The prompts serve as a means to constrain the search space into a semantically desired subspace, and the generated LLM outputs guide the agent to visit semantically diverse states within the subspace. We demonstrate that LGSD enables legged robots to visit different user-intended areas on a plane by simply changing the prompt. Furthermore, we show that language guidance aids in discovering more diverse skills compared to five existing skill discovery methods in robot-arm manipulation environments. Lastly, LGSD provides a simple way of utilizing learned skills via natural language.
Related papers
- Teaching Embodied Reinforcement Learning Agents: Informativeness and Diversity of Language Use [16.425032085699698]
It is desirable for embodied agents to have the ability to leverage human language to gain explicit or implicit knowledge for learning tasks.
It's not clear how to incorporate rich language use to facilitate task learning.
This paper studies different types of language inputs in facilitating reinforcement learning.
arXiv Detail & Related papers (2024-10-31T17:59:52Z) - SkiLD: Unsupervised Skill Discovery Guided by Factor Interactions [48.003320766433966]
This work introduces Skill Discovery from Local Dependencies (Skild)
Skild develops a novel skill learning objective that explicitly encourages the mastering of skills that induce different interactions within an environment.
We evaluate Skild in several domains with challenging, long-horizon sparse reward tasks including a realistic simulated household robot domain.
arXiv Detail & Related papers (2024-10-24T04:01:59Z) - Exploration by Learning Diverse Skills through Successor State Measures [5.062282108230929]
We aim to construct a set of diverse skills which uniformly cover state space.
We consider the distribution of states reached by a policy conditioned on each skill and leverage the successor state measure.
Our findings demonstrate that this new formalization promotes more robust and efficient exploration.
arXiv Detail & Related papers (2024-06-14T15:36:15Z) - Rethinking Mutual Information for Language Conditioned Skill Discovery
on Imitation Learning [36.624923972563415]
We propose an end-to-end imitation learning approach known as Language Conditioned Skill Discovery (LCSD)
We utilize vector quantization to learn discrete latent skills and leverage skill sequences of trajectories to reconstruct high-level semantic instructions.
Our approach exhibits enhanced generalization capabilities towards unseen tasks, improved skill interpretability, and notably higher rates of task completion success.
arXiv Detail & Related papers (2024-02-27T13:53:52Z) - Choreographer: Learning and Adapting Skills in Imagination [60.09911483010824]
We present Choreographer, a model-based agent that exploits its world model to learn and adapt skills in imagination.
Our method decouples the exploration and skill learning processes, being able to discover skills in the latent state space of the model.
Choreographer is able to learn skills both from offline data, and by collecting data simultaneously with an exploration policy.
arXiv Detail & Related papers (2022-11-23T23:31:14Z) - Multilingual Word Sense Disambiguation with Unified Sense Representation [55.3061179361177]
We propose building knowledge and supervised-based Multilingual Word Sense Disambiguation (MWSD) systems.
We build unified sense representations for multiple languages and address the annotation scarcity problem for MWSD by transferring annotations from rich-sourced languages to poorer ones.
Evaluations of SemEval-13 and SemEval-15 datasets demonstrate the effectiveness of our methodology.
arXiv Detail & Related papers (2022-10-14T01:24:03Z) - LISA: Learning Interpretable Skill Abstractions from Language [85.20587800593293]
We propose a hierarchical imitation learning framework that can learn diverse, interpretable skills from language-conditioned demonstrations.
Our method demonstrates a more natural way to condition on language in sequential decision-making problems.
arXiv Detail & Related papers (2022-02-28T19:43:24Z) - Lipschitz-constrained Unsupervised Skill Discovery [91.51219447057817]
Lipschitz-constrained Skill Discovery (LSD) encourages the agent to discover more diverse, dynamic, and far-reaching skills.
LSD outperforms previous approaches in terms of skill diversity, state space coverage, and performance on seven downstream tasks.
arXiv Detail & Related papers (2022-02-02T08:29:04Z) - Relative Variational Intrinsic Control [11.328970848714919]
Relative Variational Intrinsic Control (RVIC) incentivizes learning skills that are distinguishable in how they change the agent's relationship to its environment.
We show how RVIC skills are more useful than skills discovered by existing methods when used in hierarchical reinforcement learning.
arXiv Detail & Related papers (2020-12-14T18:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.