SkiLD: Unsupervised Skill Discovery Guided by Factor Interactions
- URL: http://arxiv.org/abs/2410.18416v1
- Date: Thu, 24 Oct 2024 04:01:59 GMT
- Title: SkiLD: Unsupervised Skill Discovery Guided by Factor Interactions
- Authors: Zizhao Wang, Jiaheng Hu, Caleb Chuck, Stephen Chen, Roberto Martín-Martín, Amy Zhang, Scott Niekum, Peter Stone,
- Abstract summary: This work introduces Skill Discovery from Local Dependencies (Skild)
Skild develops a novel skill learning objective that explicitly encourages the mastering of skills that induce different interactions within an environment.
We evaluate Skild in several domains with challenging, long-horizon sparse reward tasks including a realistic simulated household robot domain.
- Score: 48.003320766433966
- License:
- Abstract: Unsupervised skill discovery carries the promise that an intelligent agent can learn reusable skills through autonomous, reward-free environment interaction. Existing unsupervised skill discovery methods learn skills by encouraging distinguishable behaviors that cover diverse states. However, in complex environments with many state factors (e.g., household environments with many objects), learning skills that cover all possible states is impossible, and naively encouraging state diversity often leads to simple skills that are not ideal for solving downstream tasks. This work introduces Skill Discovery from Local Dependencies (Skild), which leverages state factorization as a natural inductive bias to guide the skill learning process. The key intuition guiding Skild is that skills that induce <b>diverse interactions</b> between state factors are often more valuable for solving downstream tasks. To this end, Skild develops a novel skill learning objective that explicitly encourages the mastering of skills that effectively induce different interactions within an environment. We evaluate Skild in several domains with challenging, long-horizon sparse reward tasks including a realistic simulated household robot domain, where Skild successfully learns skills with clear semantic meaning and shows superior performance compared to existing unsupervised reinforcement learning methods that only maximize state coverage.
Related papers
- Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning [39.991887534269445]
Disentangled Unsupervised Skill Discovery (DUSDi) is a method for learning disentangled skills that can be efficiently reused to solve downstream tasks.
DUSDi decomposes skills into disentangled components, where each skill component only affects one factor of the state space.
DUSDi successfully learns disentangled skills, and significantly outperforms previous skill discovery methods when it comes to applying the learned skills to solve downstream tasks.
arXiv Detail & Related papers (2024-10-15T04:13:20Z) - Language Guided Skill Discovery [56.84356022198222]
We introduce Language Guided Skill Discovery (LGSD) to maximize semantic diversity between skills.
LGSD takes user prompts as input and outputs a set of semantically distinctive skills.
We demonstrate that LGSD enables legged robots to visit different user-intended areas on a plane by simply changing the prompt.
arXiv Detail & Related papers (2024-06-07T04:25:38Z) - SLIM: Skill Learning with Multiple Critics [8.645929825516818]
Self-supervised skill learning aims to acquire useful behaviors that leverage the underlying dynamics of the environment.
Latent variable models, based on mutual information, have been successful in this task but still struggle in the context of robotic manipulation.
We introduce SLIM, a multi-critic learning approach for skill discovery with a particular focus on robotic manipulation.
arXiv Detail & Related papers (2024-02-01T18:07:33Z) - Unsupervised Discovery of Continuous Skills on a Sphere [15.856188608650228]
We propose a novel method for learning potentially an infinite number of different skills, which is named discovery of continuous skills on a sphere (DISCS)
In DISCS, skills are learned by maximizing mutual information between skills and states, and each skill corresponds to a continuous value on a sphere.
Because the representations of skills in DISCS are continuous, infinitely diverse skills could be learned.
arXiv Detail & Related papers (2023-05-21T06:29:41Z) - Behavior Contrastive Learning for Unsupervised Skill Discovery [75.6190748711826]
We propose a novel unsupervised skill discovery method through contrastive learning among behaviors.
Under mild assumptions, our objective maximizes the MI between different behaviors based on the same skill.
Our method implicitly increases the state entropy to obtain better state coverage.
arXiv Detail & Related papers (2023-05-08T06:02:11Z) - Controllability-Aware Unsupervised Skill Discovery [94.19932297743439]
We introduce a novel unsupervised skill discovery method, Controllability-aware Skill Discovery (CSD), which actively seeks complex, hard-to-control skills without supervision.
The key component of CSD is a controllability-aware distance function, which assigns larger values to state transitions that are harder to achieve with the current skills.
Our experimental results in six robotic manipulation and locomotion environments demonstrate that CSD can discover diverse complex skills with no supervision.
arXiv Detail & Related papers (2023-02-10T08:03:09Z) - Choreographer: Learning and Adapting Skills in Imagination [60.09911483010824]
We present Choreographer, a model-based agent that exploits its world model to learn and adapt skills in imagination.
Our method decouples the exploration and skill learning processes, being able to discover skills in the latent state space of the model.
Choreographer is able to learn skills both from offline data, and by collecting data simultaneously with an exploration policy.
arXiv Detail & Related papers (2022-11-23T23:31:14Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
We propose a method to discover generalizable skills via automated generation of a diverse set of tasks.
As opposed to prior work on unsupervised discovery of skills, our method pairs each skill with a unique task produced by a trainable task generator.
A task discriminator defined on the robot behaviors in the generated tasks is jointly trained to estimate the evidence lower bound of the diversity objective.
The learned skills can then be composed in a hierarchical reinforcement learning algorithm to solve unseen target tasks.
arXiv Detail & Related papers (2021-06-26T03:41:51Z) - Relative Variational Intrinsic Control [11.328970848714919]
Relative Variational Intrinsic Control (RVIC) incentivizes learning skills that are distinguishable in how they change the agent's relationship to its environment.
We show how RVIC skills are more useful than skills discovered by existing methods when used in hierarchical reinforcement learning.
arXiv Detail & Related papers (2020-12-14T18:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.