Exploring the Determinants of Pedestrian Crash Severity Using an AutoML Approach
- URL: http://arxiv.org/abs/2406.06624v1
- Date: Fri, 7 Jun 2024 22:02:36 GMT
- Title: Exploring the Determinants of Pedestrian Crash Severity Using an AutoML Approach
- Authors: Amir Rafe, Patrick A. Singleton,
- Abstract summary: The research employs AutoML to assess the effects of various explanatory variables on crash outcomes.
The study incorporates SHAP (SHapley Additive exPlanations) to interpret the contributions of individual features in the predictive model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates pedestrian crash severity through Automated Machine Learning (AutoML), offering a streamlined and accessible method for analyzing critical factors. Utilizing a detailed dataset from Utah spanning 2010-2021, the research employs AutoML to assess the effects of various explanatory variables on crash outcomes. The study incorporates SHAP (SHapley Additive exPlanations) to interpret the contributions of individual features in the predictive model, enhancing the understanding of influential factors such as lighting conditions, road type, and weather on pedestrian crash severity. Emphasizing the efficiency and democratization of data-driven methodologies, the paper discusses the benefits of using AutoML in traffic safety analysis. This integration of AutoML with SHAP analysis not only bolsters predictive accuracy but also improves interpretability, offering critical insights into effective pedestrian safety measures. The findings highlight the potential of this approach in advancing the analysis of pedestrian crash severity.
Related papers
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - An Explainable Machine Learning Approach to Traffic Accident Fatality Prediction [0.02730969268472861]
Road traffic accidents pose a significant public health threat worldwide.
This study presents a machine learning-based approach for classifying fatal and non-fatal road accident outcomes.
arXiv Detail & Related papers (2024-09-18T12:41:56Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
Traffic accidents frequently lead to fatal injuries, contributing to over 50 million deaths until 2023.
Previous research primarily assessed the importance of individual participants, treating them as independent entities.
We introduce Driving scene Relationship self-Understanding transformer (DRUformer) to enhance the important object detection task.
arXiv Detail & Related papers (2023-11-11T07:26:47Z) - Evaluating Pedestrian Trajectory Prediction Methods with Respect to Autonomous Driving [0.9217021281095907]
In this paper, we assess the state of the art in pedestrian trajectory prediction within the context of generating single trajectories.
The evaluation is conducted on the widely-used ETH/UCY dataset where the Average Displacement Error (ADE) and the Final Displacement Error (FDE) are reported.
arXiv Detail & Related papers (2023-08-09T19:21:50Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Predicting Driver Takeover Time in Conditionally Automated Driving [14.861880139643942]
One of the critical factors that quantifies the safe takeover transition is takeover time.
Previous studies identified the effects of many factors on takeover time, such as takeover lead time, non-driving tasks, modalities of the takeover requests (TORs) and scenario urgency.
We used eXtreme Gradient Boosting to predict takeover time using a dataset from a meta-analysis study.
arXiv Detail & Related papers (2021-07-20T15:01:49Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
We analyze the requirements on pedestrian behavior prediction for automated driving via a system-level approach.
Based on human driving behavior we derive appropriate reaction patterns of an automated vehicle.
We present a pedestrian prediction model based on a Variational Conditional Auto-Encoder which incorporates multiple contextual cues.
arXiv Detail & Related papers (2020-12-15T16:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.