論文の概要: Sparse Binarization for Fast Keyword Spotting
- arxiv url: http://arxiv.org/abs/2406.06634v1
- Date: Sun, 9 Jun 2024 08:03:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 20:54:41.186736
- Title: Sparse Binarization for Fast Keyword Spotting
- Title(参考訳): 高速なキーワードスポッティングのためのスパース二元化
- Authors: Jonathan Svirsky, Uri Shaham, Ofir Lindenbaum,
- Abstract要約: KWSモデルは、リアルタイムアプリケーション、プライバシ、帯域幅効率のためにエッジデバイスにデプロイすることができる。
本稿では,スパース入力表現に基づく新しいキーワードスポッティングモデルを提案する。
また,本手法は高速かつノイズの多い環境でもより堅牢である。
- 参考スコア(独自算出の注目度): 10.964148450512972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing prevalence of voice-activated devices and applications, keyword spotting (KWS) models enable users to interact with technology hands-free, enhancing convenience and accessibility in various contexts. Deploying KWS models on edge devices, such as smartphones and embedded systems, offers significant benefits for real-time applications, privacy, and bandwidth efficiency. However, these devices often possess limited computational power and memory. This necessitates optimizing neural network models for efficiency without significantly compromising their accuracy. To address these challenges, we propose a novel keyword-spotting model based on sparse input representation followed by a linear classifier. The model is four times faster than the previous state-of-the-art edge device-compatible model with better accuracy. We show that our method is also more robust in noisy environments while being fast. Our code is available at: https://github.com/jsvir/sparknet.
- Abstract(参考訳): 音声アクティベートデバイスやアプリケーションの普及に伴い、キーワードスポッティング(KWS)モデルは、テクノロジハンズフリーと対話し、さまざまなコンテキストにおける利便性とアクセシビリティを向上させる。
スマートフォンや組み込みシステムなどのエッジデバイスにKWSモデルをデプロイすることは、リアルタイムアプリケーション、プライバシ、帯域幅効率に大きなメリットをもたらす。
しかし、これらのデバイスは計算能力とメモリが限られていることが多い。
これにより、精度を著しく損なうことなく、効率よくニューラルネットワークモデルを最適化する必要がある。
これらの課題に対処するため、スパース入力表現に基づく新しいキーワードスポッティングモデルを提案し、続いて線形分類器を提案する。
このモデルは、従来の最先端デバイス互換モデルよりも4倍高速で、精度が良い。
また,本手法は高速かつノイズの多い環境でもより堅牢であることを示す。
私たちのコードは、https://github.com/jsvir/sparknet.comで利用可能です。
関連論文リスト
- Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
我々は,ネットワーク量子化技術を用いて推論を高速化し,計算限定プラットフォームでの利用を可能にする。
バイナリディスクリプタを用いた効率的な量子化ネットワークZippyPointは,ネットワーク実行速度,ディスクリプタマッチング速度,3Dモデルサイズを改善する。
これらの改善は、ホモグラフィー推定、視覚的ローカライゼーション、マップフリーな視覚的再ローカライゼーションのタスクで評価されるように、小さなパフォーマンス劣化をもたらす。
論文 参考訳(メタデータ) (2022-03-07T18:59:03Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Load-balanced Gather-scatter Patterns for Sparse Deep Neural Networks [20.374784902476318]
モデル重み付けにゼロを導入する方法として, モデル精度と計算効率のトレードオフを良好に提供する方法として, プルーニングが有効であることが示されている。
現代のプロセッサには、高速なオンチップスクラッチパッドメモリと、間接的に負荷を発生させ、そのようなメモリ上の操作を格納する集/散乱エンジンが備わっている。
本研究では,スクラッチパッドメモリと集合/散乱エンジンを利用して,ニューラルネットワークの推論を高速化する,新しいスパースパターン(GSパターン)を提案する。
論文 参考訳(メタデータ) (2021-12-20T22:55:45Z) - Real-time Human Detection Model for Edge Devices [0.0]
畳み込みニューラルネットワーク(CNN)は、検出と分類タスクにおいて、従来の特徴抽出と機械学習モデルを置き換える。
最近、リアルタイムタスクのために軽量CNNモデルが導入されている。
本稿では,Raspberry Piのような限られたエッジデバイスに適合するCNNベースの軽量モデルを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:42:17Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
本稿では,ニューラルネットワークの「圧縮可能な部分空間」を訓練する手法を提案する。
構造的・非構造的空間に対する推定時間における微粒な精度・効率のトレードオフを任意に達成するための結果を示す。
我々のアルゴリズムは、可変ビット幅での量子化にまで拡張し、個別に訓練されたネットワークと同等の精度を実現する。
論文 参考訳(メタデータ) (2021-10-08T17:03:34Z) - Broadcasted Residual Learning for Efficient Keyword Spotting [7.335747584353902]
モデルサイズと計算負荷を小さくして高精度な放送残差学習手法を提案する。
また,放送残差学習に基づく新しいネットワークアーキテクチャ,BC-Residual Network(BC-ResNet)を提案する。
BC-ResNetsは、Googleの音声コマンドデータセット v1 と v2 で、最先端の98.0% と98.7% のトップ-1 の精度をそれぞれ達成している。
論文 参考訳(メタデータ) (2021-06-08T06:55:39Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
パターンと接続性を組み合わせた新しい空間空間,すなわちパターンベースの空間空間を導入し,高度に正確かつハードウェアに親しみやすいものにした。
新たなパターンベースの空間性に対する我々のアプローチは,モバイルプラットフォーム上での高効率DNN実行のためのコンパイラ最適化に自然に適合する。
論文 参考訳(メタデータ) (2020-01-20T16:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。