Latent Diffusion Model-Enabled Real-Time Semantic Communication Considering Semantic Ambiguities and Channel Noises
- URL: http://arxiv.org/abs/2406.06644v2
- Date: Mon, 24 Jun 2024 23:41:23 GMT
- Title: Latent Diffusion Model-Enabled Real-Time Semantic Communication Considering Semantic Ambiguities and Channel Noises
- Authors: Jianhua Pei, Cheng Feng, Ping Wang, Hina Tabassum, Dongyuan Shi,
- Abstract summary: This paper constructs a latent diffusion model-enabled SemCom system, and proposes three improvements compared to existing works.
A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.
An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
- Score: 18.539501941328393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic communication (SemCom) has emerged as a new paradigm for 6G communication, with deep learning (DL) models being one of the key drives to shift from the accuracy of bit/symbol to the semantics and pragmatics of data. Nevertheless, DL-based SemCom systems often face performance bottlenecks due to overfitting, poor generalization, and sensitivity to outliers. Furthermore, the varying-fading gains and noises with uncertain signal-to-noise ratios (SNRs) commonly present in wireless channels usually restrict the accuracy of semantic information transmission. Consequently, this paper constructs a latent diffusion model-enabled SemCom system, and proposes three improvements compared to existing works: i) To handle potential outliers in the source data, semantic errors obtained by projected gradient descent based on the vulnerabilities of DL models, are utilized to update the parameters and obtain an outlier-robust encoder. ii) A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter and is placed before the decoder at the receiver, enabling adaptation for out-of-distribution data and enhancing human-perceptual quality. iii) An end-to-end consistency distillation (EECD) strategy is used to distill the diffusion models trained in latent space, enabling deterministic single or few-step real-time denoising in various noisy channels while maintaining high semantic quality. Extensive numerical experiments across different datasets demonstrate the superiority of the proposed SemCom system, consistently proving its robustness to outliers, the capability to transmit data with unknown distributions, and the ability to perform real-time channel denoising tasks while preserving high human perceptual quality, outperforming the existing denoising approaches in semantic metrics.
Related papers
- RIS-aided Latent Space Alignment for Semantic Channel Equalization [10.555901476981923]
We introduce a new paradigm in wireless communications, focusing on transmitting the intended meaning rather than ensuring strict bit-level accuracy.<n>These systems often rely on Deep Neural Networks (DNNs) to learn and encode meaning directly from data, enabling more efficient communication.<n>In this work, we propose a joint physical and semantic channel equalization framework that leverages the presence of Reconfigurable Intelligent Surfaces (RIS)<n>We show that the proposed joint equalization strategies consistently outperform conventional, disjoint approaches to physical and semantic channel equalization across a broad range of scenarios and wireless channel conditions.
arXiv Detail & Related papers (2025-07-22T10:51:35Z) - TOAST: Task-Oriented Adaptive Semantic Transmission over Dynamic Wireless Environments [3.3107717550009865]
TOAST (Task-Oriented Adaptive Semantic Transmission) is a unified framework designed to address the core challenge of multi-task optimization in wireless environments.<n>We formulate adaptive task balancing as a Markov decision process, employing deep reinforcement learning to dynamically adjust the trade-off between image reconstruction fidelity and semantic classification accuracy.<n>We integrate module-specific Low-Rank Adaptation (LoRA) mechanisms throughout our Swin Transformer-based joint source-channel coding architecture.
arXiv Detail & Related papers (2025-06-27T04:36:30Z) - Diffusion-based Task-oriented Semantic Communications with Model Inversion Attack [6.115539523178243]
Task-oriented semantic communication is a promising neural network-based system design for 6G networks.<n>We propose a diffusion-based semantic communication framework, named DiffSem, to optimize semantic information reconstruction.<n>Our results show that DiffSem improves the classification accuracy by 10.03%, and maintain stable performance under dynamic channels.
arXiv Detail & Related papers (2025-06-24T05:21:27Z) - Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application [11.385703484113552]
We propose a novel semantic communication framework empowered by generative artificial intelligence (GAI)<n>A latent diffusion model (LDM)-based semantic communication framework is proposed that combines a variational autoencoder for semantic features extraction.<n>The proposed system is a training-free framework that supports zero-shot generalization, and achieves superior performance under low-SNR and out-of-distribution conditions.
arXiv Detail & Related papers (2025-06-06T03:20:32Z) - Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G wireless systems are expected to support massive volumes of data with ultra-low latency.<n> conventional bit-level transmission strategies cannot support the efficiency and adaptability required by modern, data-intensive applications.<n>The concept of semantic communication (SemCom) addresses this limitation by focusing on transmitting task-relevant semantic information instead of raw data.
arXiv Detail & Related papers (2025-05-28T04:03:57Z) - Task-Oriented Low-Label Semantic Communication With Self-Supervised Learning [67.06363342414397]
Task-oriented semantic communication enhances transmission efficiency by conveying semantic information rather than exact messages.<n>Deep learning (DL)-based semantic communication can effectively cultivate the essential semantic knowledge for semantic extraction, transmission, and interpretation.<n>We propose a self-supervised learning-based semantic communication framework (SLSCom) to enhance task inference performance.
arXiv Detail & Related papers (2025-05-26T13:06:18Z) - SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.
Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.
We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
arXiv Detail & Related papers (2025-03-16T12:32:11Z) - Variational Source-Channel Coding for Semantic Communication [6.55201432222942]
The current semantic communication systems are generally modeled as an Auto-Encoder (AE)
AE lacks a deep integration of AI principles with communication strategies due to its inability to effectively capture channel dynamics.
This paper explores the inclusion of data distortion distinguishes semantic communication from classical communication.
A Variational Source-Channel Coding (VSCC) method is proposed for constructing semantic communication systems.
arXiv Detail & Related papers (2024-09-26T03:42:05Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Semantic Successive Refinement: A Generative AI-aided Semantic Communication Framework [27.524671767937512]
We introduce a novel Generative AI Semantic Communication (GSC) system for single-user scenarios.
At the transmitter end, it employs a joint source-channel coding mechanism based on the Swin Transformer for efficient semantic feature extraction.
At the receiver end, an advanced Diffusion Model (DM) reconstructs high-quality images from degraded signals, enhancing perceptual details.
arXiv Detail & Related papers (2024-07-31T06:08:51Z) - Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [27.049330099874396]
This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model.
Our experimental results demonstrate significant improvements in pixel-level metrics like peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS)
arXiv Detail & Related papers (2024-07-26T02:34:25Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Latency-Aware Generative Semantic Communications with Pre-Trained Diffusion Models [43.27015039765803]
We develop a latency-aware semantic communications framework with pre-trained generative models.
We demonstrate ultra-low-rate, low-latency, and channel-adaptive semantic communications.
arXiv Detail & Related papers (2024-03-25T23:04:09Z) - Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications [12.218161437914118]
conditional denoising diffusion probabilistic models (DDPMs) are proposed to enhance the data transmission and reconstruction over wireless channels.
Inspired by this, the key idea is to leverage the generative prior of diffusion models in learning a "noisy-to-clean" transformation of the information signal.
The proposed scheme could be beneficial for communication scenarios in which a prior knowledge of the information content is available.
arXiv Detail & Related papers (2023-10-30T11:33:01Z) - Asymmetric Diffusion Based Channel-Adaptive Secure Wireless Semantic
Communications [5.539381022630274]
We propose a secure semantic communication system, DiffuSeC, which leverages the diffusion model and deep reinforcement learning (DRL)
With the diffusing module in the sender end and the asymmetric denoising module in the receiver end, the DiffuSeC mitigates the perturbations added by semantic attacks.
To further improve the robustness under unstable channel conditions caused by semantic attacks, we developed a DRL-based channel-adaptive diffusion step selection scheme.
arXiv Detail & Related papers (2023-10-30T11:00:47Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Alternate Learning based Sparse Semantic Communications for Visual
Transmission [13.319988526342527]
Semantic communication (SemCom) demonstrates strong superiority over conventional bit-level accurate transmission.
In this paper, we propose an alternate learning based SemCom system for visual transmission, named SparseSBC.
arXiv Detail & Related papers (2023-07-31T03:34:16Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.