Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises
- URL: http://arxiv.org/abs/2406.06644v4
- Date: Fri, 14 Feb 2025 11:57:02 GMT
- Title: Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises
- Authors: Jianhua Pei, Cheng Feng, Ping Wang, Hina Tabassum, Dongyuan Shi,
- Abstract summary: This paper develops a latent diffusion model-enabled SemCom system to handle outliers in source data.
A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.
An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
- Score: 18.539501941328393
- License:
- Abstract: Deep learning (DL)-based Semantic Communications (SemCom) is becoming critical to maximize overall efficiency of communication networks. Nevertheless, SemCom is sensitive to wireless channel uncertainties, source outliers, and suffer from poor generalization bottlenecks. To address the mentioned challenges, this paper develops a latent diffusion model-enabled SemCom system with three key contributions, i.e., i) to handle potential outliers in the source data, semantic errors obtained by projected gradient descent based on the vulnerabilities of DL models, are utilized to update the parameters and obtain an outlier-robust encoder, ii) a lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter and is placed before the decoder at the receiver, enabling adaptation for out-of-distribution data and enhancing human-perceptual quality, and iii) an end-to-end consistency distillation (EECD) strategy is used to distill the diffusion models trained in latent space, enabling deterministic single or few-step low-latency denoising in various noisy channels while maintaining high semantic quality. Extensive numerical experiments across different datasets demonstrate the superiority of the proposed SemCom system, consistently proving its robustness to outliers, the capability to transmit data with unknown distributions, and the ability to perform real-time channel denoising tasks while preserving high human perceptual quality, outperforming the existing denoising approaches in semantic metrics such as multi-scale structural similarity index measure (MS-SSIM) and learned perceptual image path similarity (LPIPS).
Related papers
- Variational Source-Channel Coding for Semantic Communication [6.55201432222942]
The current semantic communication systems are generally modeled as an Auto-Encoder (AE)
AE lacks a deep integration of AI principles with communication strategies due to its inability to effectively capture channel dynamics.
This paper explores the inclusion of data distortion distinguishes semantic communication from classical communication.
A Variational Source-Channel Coding (VSCC) method is proposed for constructing semantic communication systems.
arXiv Detail & Related papers (2024-09-26T03:42:05Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Semantic Successive Refinement: A Generative AI-aided Semantic Communication Framework [27.524671767937512]
We introduce a novel Generative AI Semantic Communication (GSC) system for single-user scenarios.
At the transmitter end, it employs a joint source-channel coding mechanism based on the Swin Transformer for efficient semantic feature extraction.
At the receiver end, an advanced Diffusion Model (DM) reconstructs high-quality images from degraded signals, enhancing perceptual details.
arXiv Detail & Related papers (2024-07-31T06:08:51Z) - Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [27.049330099874396]
This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model.
Our experimental results demonstrate significant improvements in pixel-level metrics like peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS)
arXiv Detail & Related papers (2024-07-26T02:34:25Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Asymmetric Diffusion Based Channel-Adaptive Secure Wireless Semantic
Communications [5.539381022630274]
We propose a secure semantic communication system, DiffuSeC, which leverages the diffusion model and deep reinforcement learning (DRL)
With the diffusing module in the sender end and the asymmetric denoising module in the receiver end, the DiffuSeC mitigates the perturbations added by semantic attacks.
To further improve the robustness under unstable channel conditions caused by semantic attacks, we developed a DRL-based channel-adaptive diffusion step selection scheme.
arXiv Detail & Related papers (2023-10-30T11:00:47Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Alternate Learning based Sparse Semantic Communications for Visual
Transmission [13.319988526342527]
Semantic communication (SemCom) demonstrates strong superiority over conventional bit-level accurate transmission.
In this paper, we propose an alternate learning based SemCom system for visual transmission, named SparseSBC.
arXiv Detail & Related papers (2023-07-31T03:34:16Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.