SecureNet: A Comparative Study of DeBERTa and Large Language Models for Phishing Detection
- URL: http://arxiv.org/abs/2406.06663v1
- Date: Mon, 10 Jun 2024 13:13:39 GMT
- Title: SecureNet: A Comparative Study of DeBERTa and Large Language Models for Phishing Detection
- Authors: Sakshi Mahendru, Tejul Pandit,
- Abstract summary: Phishing is a major threat to organizations by using social engineering to trick users into revealing sensitive information.
In this paper, we investigate whether the remarkable performance of Large Language Models (LLMs) can be leveraged for particular task like text classification.
We demonstrate how LLMs can generate convincing phishing emails, making it harder to spot scams.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phishing, whether through email, SMS, or malicious websites, poses a major threat to organizations by using social engineering to trick users into revealing sensitive information. It not only compromises company's data security but also incurs significant financial losses. In this paper, we investigate whether the remarkable performance of Large Language Models (LLMs) can be leveraged for particular task like text classification, particularly detecting malicious content and compare its results with state-of-the-art Deberta V3 (DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing) model. We systematically assess the potential and limitations of both approaches using comprehensive public datasets comprising diverse data sources such as email, HTML, URL, SMS, and synthetic data generation. Additionally, we demonstrate how LLMs can generate convincing phishing emails, making it harder to spot scams and evaluate the performance of both models in this context. Our study delves further into the challenges encountered by DeBERTa V3 during its training phases, fine-tuning methodology and transfer learning processes. Similarly, we examine the challenges associated with LLMs and assess their respective performance. Among our experimental approaches, the transformer-based DeBERTa method emerged as the most effective, achieving a test dataset (HuggingFace phishing dataset) recall (sensitivity) of 95.17% closely followed by GPT-4 providing a recall of 91.04%. We performed additional experiments with other datasets on the trained DeBERTa V3 model and LLMs like GPT 4 and Gemini 1.5. Based on our findings, we provide valuable insights into the effectiveness and robustness of these advanced language models, offering a detailed comparative analysis that can inform future research efforts in strengthening cybersecurity measures for detecting and mitigating phishing threats.
Related papers
- SAFE: Advancing Large Language Models in Leveraging Semantic and Syntactic Relationships for Software Vulnerability Detection [23.7268575752712]
Software vulnerabilities (SVs) have emerged as a prevalent and critical concern for safety-critical security systems.
We propose a novel framework that enhances the capability of large language models to learn and utilize semantic and syntactic relationships from source code data for SVD.
arXiv Detail & Related papers (2024-09-02T00:49:02Z) - Tracing Privacy Leakage of Language Models to Training Data via Adjusted Influence Functions [5.194905607116855]
This work implements Influence Functions (IFs) to trace privacy leakage back to the training data.
We propose Heuristically Adjusted IF (HAIF) which reduces the weight of tokens with large gradient norms.
HAIF significantly improves tracing accuracy, enhancing it by 20.96% to 73.71% on the PII-E dataset and 3.21% to 45.93% on the PII-CR dataset.
arXiv Detail & Related papers (2024-08-20T00:40:49Z) - An Explainable Transformer-based Model for Phishing Email Detection: A
Large Language Model Approach [2.8282906214258805]
Phishing email is a serious cyber threat that tries to deceive users by sending false emails with the intention of stealing confidential information or causing financial harm.
Despite extensive academic research, phishing detection remains an ongoing and formidable challenge in the cybersecurity landscape.
We present an optimized, fine-tuned transformer-based DistilBERT model designed for the detection of phishing emails.
arXiv Detail & Related papers (2024-02-21T15:23:21Z) - Phishing Website Detection through Multi-Model Analysis of HTML Content [0.0]
This study addresses the pressing issue of phishing by introducing an advanced detection model that meticulously focuses on HTML content.
Our proposed approach integrates a specialized Multi-Layer Perceptron (MLP) model for structured tabular data and two pretrained Natural Language Processing (NLP) models for analyzing textual features.
The fusion of two NLP and one model,termed MultiText-LP, achieves impressive results, yielding a 96.80 F1 score and a 97.18 accuracy score on our research dataset.
arXiv Detail & Related papers (2024-01-09T21:08:13Z) - Text generation for dataset augmentation in security classification
tasks [55.70844429868403]
This study evaluates the application of natural language text generators to fill this data gap in multiple security-related text classification tasks.
We find substantial benefits for GPT-3 data augmentation strategies in situations with severe limitations on known positive-class samples.
arXiv Detail & Related papers (2023-10-22T22:25:14Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
We focus on the summarization task and investigate the membership inference (MI) attack.
We exploit text similarity and the model's resistance to document modifications as potential MI signals.
We discuss several safeguards for training summarization models to protect against MI attacks and discuss the inherent trade-off between privacy and utility.
arXiv Detail & Related papers (2023-10-20T05:44:39Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Detecting Phishing Sites Using ChatGPT [2.3999111269325266]
We propose a novel system called ChatPhishDetector that utilizes Large Language Models (LLMs) to detect phishing sites.
Our system involves leveraging a web crawler to gather information from websites, generating prompts for LLMs based on the crawled data, and then retrieving the detection results from the responses generated by the LLMs.
The experimental results using GPT-4V demonstrated outstanding performance, with a precision of 98.7% and a recall of 99.6%, outperforming the detection results of other LLMs and existing systems.
arXiv Detail & Related papers (2023-06-09T11:30:08Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - From Sound Representation to Model Robustness [82.21746840893658]
We investigate the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
Averaged over various experiments on three environmental sound datasets, we found the ResNet-18 model outperforms other deep learning architectures.
arXiv Detail & Related papers (2020-07-27T17:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.