Tracing Privacy Leakage of Language Models to Training Data via Adjusted Influence Functions
- URL: http://arxiv.org/abs/2408.10468v4
- Date: Thu, 5 Sep 2024 15:47:45 GMT
- Title: Tracing Privacy Leakage of Language Models to Training Data via Adjusted Influence Functions
- Authors: Jinxin Liu, Zao Yang,
- Abstract summary: This work implements Influence Functions (IFs) to trace privacy leakage back to the training data.
We propose Heuristically Adjusted IF (HAIF) which reduces the weight of tokens with large gradient norms.
HAIF significantly improves tracing accuracy, enhancing it by 20.96% to 73.71% on the PII-E dataset and 3.21% to 45.93% on the PII-CR dataset.
- Score: 5.194905607116855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The responses generated by Large Language Models (LLMs) can include sensitive information from individuals and organizations, leading to potential privacy leakage. This work implements Influence Functions (IFs) to trace privacy leakage back to the training data, thereby mitigating privacy concerns of Language Models (LMs). However, we notice that current IFs struggle to accurately estimate the influence of tokens with large gradient norms, potentially overestimating their influence. When tracing the most influential samples, this leads to frequently tracing back to samples with large gradient norm tokens, overshadowing the actual most influential samples even if their influences are well estimated. To address this issue, we propose Heuristically Adjusted IF (HAIF), which reduces the weight of tokens with large gradient norms, thereby significantly improving the accuracy of tracing the most influential samples. To establish easily obtained groundtruth for tracing privacy leakage, we construct two datasets, PII-E and PII-CR, representing two distinct scenarios: one with identical text in the model outputs and pre-training data, and the other where models leverage their reasoning abilities to generate text divergent from pre-training data. HAIF significantly improves tracing accuracy, enhancing it by 20.96% to 73.71% on the PII-E dataset and 3.21% to 45.93% on the PII-CR dataset, compared to the best SOTA IFs against various GPT-2 and QWen-1.5 models. HAIF also outperforms SOTA IFs on real-world pretraining data CLUECorpus2020, demonstrating strong robustness regardless prompt and response lengths.
Related papers
- Autoencoder based approach for the mitigation of spurious correlations [2.7624021966289605]
Spurious correlations refer to erroneous associations in data that do not reflect true underlying relationships.
These correlations can lead deep neural networks (DNNs) to learn patterns that are not robust across diverse datasets or real-world scenarios.
We propose an autoencoder-based approach to analyze the nature of spurious correlations that exist in the Global Wheat Head Detection (GWHD) 2021 dataset.
arXiv Detail & Related papers (2024-06-27T05:28:44Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - SecureNet: A Comparative Study of DeBERTa and Large Language Models for Phishing Detection [0.0]
Phishing is a major threat to organizations by using social engineering to trick users into revealing sensitive information.
In this paper, we investigate whether the remarkable performance of Large Language Models (LLMs) can be leveraged for particular task like text classification.
We demonstrate how LLMs can generate convincing phishing emails, making it harder to spot scams.
arXiv Detail & Related papers (2024-06-10T13:13:39Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - PUMA: margin-based data pruning [51.12154122266251]
We focus on data pruning, where some training samples are removed based on the distance to the model classification boundary (i.e., margin)
We propose PUMA, a new data pruning strategy that computes the margin using DeepFool.
We show that PUMA can be used on top of the current state-of-the-art methodology in robustness, and it is able to significantly improve the model performance unlike the existing data pruning strategies.
arXiv Detail & Related papers (2024-05-10T08:02:20Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - A Pretrainer's Guide to Training Data: Measuring the Effects of Data
Age, Domain Coverage, Quality, & Toxicity [84.6421260559093]
This study is the largest set of experiments to validate, quantify, and expose undocumented intuitions about text pretraining.
Our findings indicate there does not exist a one-size-fits-all solution to filtering training data.
arXiv Detail & Related papers (2023-05-22T15:57:53Z) - Mixed Precision Quantization to Tackle Gradient Leakage Attacks in
Federated Learning [1.7205106391379026]
Federated Learning (FL) enables collaborative model building among a large number of participants without the need for explicit data sharing.
This approach shows vulnerabilities when privacy inference attacks are applied to it.
In particular, in the event of a gradient leakage attack, which has a higher success rate in retrieving sensitive data from the model gradients, FL models are at higher risk due to the presence of communication in their inherent architecture.
arXiv Detail & Related papers (2022-10-22T04:24:32Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation.
We perform experiments on two standard fairness datasets, Adult, Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset.
In all four of these tasks, F-measure results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function.
arXiv Detail & Related papers (2020-08-08T03:02:27Z) - On the Role of Dataset Quality and Heterogeneity in Model Confidence [27.657631193015252]
Safety-critical applications require machine learning models that output accurate and calibrated probabilities.
Uncalibrated deep networks are known to make over-confident predictions.
We study the impact of dataset quality by studying the impact of dataset size and the label noise on the model confidence.
arXiv Detail & Related papers (2020-02-23T05:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.