Multi-Objective Neural Architecture Search for In-Memory Computing
- URL: http://arxiv.org/abs/2406.06746v1
- Date: Mon, 10 Jun 2024 19:17:09 GMT
- Title: Multi-Objective Neural Architecture Search for In-Memory Computing
- Authors: Md Hasibul Amin, Mohammadreza Mohammadi, Ramtin Zand,
- Abstract summary: We employ neural architecture search (NAS) to enhance the efficiency of deploying diverse machine learning (ML) tasks on in-memory computing architectures.
Our evaluation of this NAS approach for IMC architecture deployment spans three distinct image classification datasets.
- Score: 0.5892638927736115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we employ neural architecture search (NAS) to enhance the efficiency of deploying diverse machine learning (ML) tasks on in-memory computing (IMC) architectures. Initially, we design three fundamental components inspired by the convolutional layers found in VGG and ResNet models. Subsequently, we utilize Bayesian optimization to construct a convolutional neural network (CNN) model with adaptable depths, employing these components. Through the Bayesian search algorithm, we explore a vast search space comprising over 640 million network configurations to identify the optimal solution, considering various multi-objective cost functions like accuracy/latency and accuracy/energy. Our evaluation of this NAS approach for IMC architecture deployment spans three distinct image classification datasets, demonstrating the effectiveness of our method in achieving a balanced solution characterized by high accuracy and reduced latency and energy consumption.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - DONNAv2 -- Lightweight Neural Architecture Search for Vision tasks [6.628409795264665]
We present the next-generation neural architecture design for computationally efficient neural architecture distillation - DONNAv2.
DONNAv2 reduces the computational cost of DONNA by 10x for the larger datasets.
To improve the quality of NAS search space, DONNAv2 leverages a block knowledge distillation filter to remove blocks with high inference costs.
arXiv Detail & Related papers (2023-09-26T04:48:50Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
This article presents the third version of a sequential model-based NAS algorithm targeting different hardware environments and multiple classification tasks.
Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks.
The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
arXiv Detail & Related papers (2022-12-13T17:14:14Z) - An Efficient End-to-End 3D Model Reconstruction based on Neural
Architecture Search [5.913946292597174]
We propose an efficient model reconstruction method utilizing neural architecture search (NAS) and binary classification.
Our method achieves significantly higher reconstruction accuracy using fewer network parameters.
arXiv Detail & Related papers (2022-02-27T08:53:43Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
We propose an efficient method to obtain better object detectors by searching for the feature pyramid network (FPN) and the prediction head of a simple anchor-free object detector.
With carefully designed search space, search algorithms, and strategies for evaluating network quality, we are able to find top-performing detection architectures within 4 days using 8 V100 GPUs.
arXiv Detail & Related papers (2021-10-24T12:20:04Z) - CONetV2: Efficient Auto-Channel Size Optimization for CNNs [35.951376988552695]
This work introduces a method that is efficient in computationally constrained environments by examining the micro-search space of channel size.
In tackling channel-size optimization, we design an automated algorithm to extract the dependencies within different connected layers of the network.
We also introduce a novel metric that highly correlates with test accuracy and enables analysis of individual network layers.
arXiv Detail & Related papers (2021-10-13T16:17:19Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - NAS-Count: Counting-by-Density with Neural Architecture Search [74.92941571724525]
We automate the design of counting models with Neural Architecture Search (NAS)
We introduce an end-to-end searched encoder-decoder architecture, Automatic Multi-Scale Network (AMSNet)
arXiv Detail & Related papers (2020-02-29T09:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.