Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints
- URL: http://arxiv.org/abs/2406.06755v1
- Date: Mon, 10 Jun 2024 19:34:07 GMT
- Title: Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints
- Authors: T. Tony Cai, Abhinav Chakraborty, Lasse Vuursteen,
- Abstract summary: We study federated learning for nonparametric regression in the context of distributed samples across different servers.
Findings shed light on the tradeoff between statistical accuracy and privacy preservation.
- Score: 5.3595271893779906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies federated learning for nonparametric regression in the context of distributed samples across different servers, each adhering to distinct differential privacy constraints. The setting we consider is heterogeneous, encompassing both varying sample sizes and differential privacy constraints across servers. Within this framework, both global and pointwise estimation are considered, and optimal rates of convergence over the Besov spaces are established. Distributed privacy-preserving estimators are proposed and their risk properties are investigated. Matching minimax lower bounds, up to a logarithmic factor, are established for both global and pointwise estimation. Together, these findings shed light on the tradeoff between statistical accuracy and privacy preservation. In particular, we characterize the compromise not only in terms of the privacy budget but also concerning the loss incurred by distributing data within the privacy framework as a whole. This insight captures the folklore wisdom that it is easier to retain privacy in larger samples, and explores the differences between pointwise and global estimation under distributed privacy constraints.
Related papers
- Differentially Private Covariate Balancing Causal Inference [8.133739801185271]
Differential privacy is the leading mathematical framework for privacy protection.
Our algorithm produces both point and interval estimators with statistical guarantees, such as consistency and rate optimality, under a given privacy budget.
arXiv Detail & Related papers (2024-10-18T18:02:13Z) - Minimax And Adaptive Transfer Learning for Nonparametric Classification under Distributed Differential Privacy Constraints [6.042269506496206]
We first establish the minimax misclassification rate, precisely characterizing the effects of privacy constraints, source samples, and target samples on classification accuracy.
The results reveal interesting phase transition phenomena and highlight the intricate trade-offs between preserving privacy and achieving classification accuracy.
arXiv Detail & Related papers (2024-06-28T17:55:41Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - Optimal Private Discrete Distribution Estimation with One-bit Communication [63.413106413939836]
We consider a private discrete distribution estimation problem with one-bit communication constraint.
We characterize the first-orders of the worst-case trade-off under the one-bit communication constraint.
These results demonstrate the optimal dependence of the privacy-utility trade-off under the one-bit communication constraint.
arXiv Detail & Related papers (2023-10-17T05:21:19Z) - Personalized Graph Federated Learning with Differential Privacy [6.282767337715445]
This paper presents a personalized graph federated learning (PGFL) framework in which distributedly connected servers and their respective edge devices collaboratively learn device or cluster-specific models.
We study a variant of the PGFL implementation that utilizes differential privacy, specifically zero-concentrated differential privacy, where a noise sequence perturbs model exchanges.
Our analysis shows that the algorithm ensures local differential privacy for all clients in terms of zero-concentrated differential privacy.
arXiv Detail & Related papers (2023-06-10T09:52:01Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
We show how to characterize the power of a statistical test under differential privacy in a plug-and-play fashion.
We show that maintaining privacy results in a noticeable reduction in performance only when the level of privacy protection is very high.
Finally, we demonstrate that the DP-SGLD algorithm, a private convex solver, can be employed for maximum likelihood estimation with a high degree of confidence.
arXiv Detail & Related papers (2022-10-05T12:55:53Z) - Private Domain Adaptation from a Public Source [48.83724068578305]
We design differentially private discrepancy-based algorithms for adaptation from a source domain with public labeled data to a target domain with unlabeled private data.
Our solutions are based on private variants of Frank-Wolfe and Mirror-Descent algorithms.
arXiv Detail & Related papers (2022-08-12T06:52:55Z) - Non-parametric Differentially Private Confidence Intervals for the
Median [3.205141100055992]
This paper proposes and evaluates several strategies to compute valid differentially private confidence intervals for the median.
We also illustrate that addressing both sources of uncertainty--the error from sampling and the error from protecting the output--should be preferred over simpler approaches that incorporate the uncertainty in a sequential fashion.
arXiv Detail & Related papers (2021-06-18T19:45:37Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.