Optimal Federated Learning for Functional Mean Estimation under Heterogeneous Privacy Constraints
- URL: http://arxiv.org/abs/2412.18992v2
- Date: Wed, 15 Jan 2025 18:07:15 GMT
- Title: Optimal Federated Learning for Functional Mean Estimation under Heterogeneous Privacy Constraints
- Authors: Tony Cai, Abhinav Chakraborty, Lasse Vuursteen,
- Abstract summary: Federated learning (FL) is a distributed machine learning technique designed to preserve data privacy and security.
This paper addresses the problem of optimal functional mean estimation from discretely sampled data in a federated setting.
- Score: 1.3654846342364308
- License:
- Abstract: Federated learning (FL) is a distributed machine learning technique designed to preserve data privacy and security, and it has gained significant importance due to its broad range of applications. This paper addresses the problem of optimal functional mean estimation from discretely sampled data in a federated setting. We consider a heterogeneous framework where the number of individuals, measurements per individual, and privacy parameters vary across one or more servers, under both common and independent design settings. In the common design setting, the same design points are measured for each individual, whereas in the independent design, each individual has their own random collection of design points. Within this framework, we establish minimax upper and lower bounds for the estimation error of the underlying mean function, highlighting the nuanced differences between common and independent designs under distributed privacy constraints. We propose algorithms that achieve the optimal trade-off between privacy and accuracy and provide optimality results that quantify the fundamental limits of private functional mean estimation across diverse distributed settings. These results characterize the cost of privacy and offer practical insights into the potential for privacy-preserving statistical analysis in federated environments.
Related papers
- Optimal Survey Design for Private Mean Estimation [4.70569058594556]
This work identifies the first privacy-aware stratified sampling scheme that minimizes the variance for general private mean estimation.
We propose an efficient algorithm to identify the integer-optimal design and offer insights on the structure of the optimal design.
arXiv Detail & Related papers (2025-01-30T03:51:25Z) - Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.
We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - Distributed, communication-efficient, and differentially private estimation of KL divergence [15.294136011320433]
Key task in managing distributed, sensitive data is to measure the extent to which a distribution changes.
We describe novel algorithmic approaches for estimating the KL divergence of data across federated models of computation, under differential privacy.
arXiv Detail & Related papers (2024-11-25T15:20:40Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints [5.3595271893779906]
We study federated learning for nonparametric regression in the context of distributed samples across different servers.
Findings shed light on the tradeoff between statistical accuracy and privacy preservation.
arXiv Detail & Related papers (2024-06-10T19:34:07Z) - Optimal Private Discrete Distribution Estimation with One-bit Communication [63.413106413939836]
We consider a private discrete distribution estimation problem with one-bit communication constraint.
We characterize the first-orders of the worst-case trade-off under the one-bit communication constraint.
These results demonstrate the optimal dependence of the privacy-utility trade-off under the one-bit communication constraint.
arXiv Detail & Related papers (2023-10-17T05:21:19Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
We show how to characterize the power of a statistical test under differential privacy in a plug-and-play fashion.
We show that maintaining privacy results in a noticeable reduction in performance only when the level of privacy protection is very high.
Finally, we demonstrate that the DP-SGLD algorithm, a private convex solver, can be employed for maximum likelihood estimation with a high degree of confidence.
arXiv Detail & Related papers (2022-10-05T12:55:53Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.