論文の概要: SpikePipe: Accelerated Training of Spiking Neural Networks via Inter-Layer Pipelining and Multiprocessor Scheduling
- arxiv url: http://arxiv.org/abs/2406.06879v1
- Date: Tue, 11 Jun 2024 01:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 19:46:28.836958
- Title: SpikePipe: Accelerated Training of Spiking Neural Networks via Inter-Layer Pipelining and Multiprocessor Scheduling
- Title(参考訳): SpikePipe: 階層間パイプライニングとマルチプロセッサスケジューリングによるスパイクニューラルネットワークの高速化トレーニング
- Authors: Sai Sanjeet, Bibhu Datta Sahoo, Keshab K. Parhi,
- Abstract要約: トレーニングスパイキングニューラルネットワーク (Training Spiking Neural Networks, SNN) は、従来のニューラルネットワークに比べて計算コストが高い。
本稿では,シストリックアレイベースのプロセッサとマルチプロセッサスケジューリングを用いて,SNNのトレーニングを高速化するための層間パイプライニングを提案する。
- 参考スコア(独自算出の注目度): 5.2831841848274985
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spiking Neural Networks (SNNs) have gained popularity due to their high energy efficiency. Prior works have proposed various methods for training SNNs, including backpropagation-based methods. Training SNNs is computationally expensive compared to their conventional counterparts and would benefit from multiprocessor hardware acceleration. This is the first paper to propose inter-layer pipelining to accelerate training in SNNs using systolic array-based processors and multiprocessor scheduling. The impact of training using delayed gradients is observed using three networks training on different datasets, showing no degradation for small networks and < 10% degradation for large networks. The mapping of various training tasks of the SNN onto systolic arrays is formulated, and the proposed scheduling method is evaluated on the three networks. The results are compared against standard pipelining algorithms. The results show that the proposed method achieves an average speedup of 1.6X compared to standard pipelining algorithms, with an upwards of 2X improvement in some cases. The incurred communication overhead due to the proposed method is less than 0.5% of the total required communication of training.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)はその高エネルギー効率のために人気を博している。
先行研究では、バックプロパゲーションに基づく手法を含む、SNNの訓練方法が提案されている。
SNNのトレーニングは従来のものに比べて計算コストが高く、マルチプロセッサハードウェアアクセラレーションの恩恵を受けるだろう。
本稿では,シストリックアレイベースのプロセッサとマルチプロセッサスケジューリングを用いて,SNNのトレーニングを高速化するための層間パイプライニングを提案する。
遅延勾配を用いたトレーニングの効果は、3つのネットワークで異なるデータセットでトレーニングし、小さなネットワークでは劣化せず、大きなネットワークでは10%も劣化しないことを示した。
SNNの各種トレーニングタスクをシストリックアレイにマッピングし,提案手法を3つのネットワーク上で評価する。
結果は、標準的なパイプラインアルゴリズムと比較される。
提案手法は,標準的なパイプライン化アルゴリズムと比較して平均1.6倍の高速化を実現し,場合によっては2倍の高速化を実現している。
提案手法による通信オーバーヘッドは,訓練に必要な通信量の0.5%以下である。
関連論文リスト
- A lifted Bregman strategy for training unfolded proximal neural network Gaussian denoisers [8.343594411714934]
屈曲した近位ニューラルネットワーク(PNN)は、深層学習と近位最適化のアプローチを組み合わせた一連の手法である。
展開されたPNNに対するBregman距離に基づく揚力トレーニングの定式化を提案する。
画像復調の数値シミュレーションにより,提案したPNNのトレーニング手法の挙動を評価する。
論文 参考訳(メタデータ) (2024-08-16T13:41:34Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
本稿では,トレーニング中にのみ第2のネットワークを導入するRSNNの教師付きトレーニング手順を提案する。
提案したトレーニング手順は、リカレント層とリードアウト層の両方のターゲットを生成することで構成される。
本研究では,8つの力学系をモデル化するためのフルFORCEトレーニング手法の性能向上とノイズ堅牢性を示す。
論文 参考訳(メタデータ) (2022-05-26T19:01:19Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Selfish Sparse RNN Training [13.165729746380816]
本稿では,1回のランでパラメータ数を固定したスパースRNNを,性能を損なうことなく訓練する手法を提案する。
我々はPenn TreeBankとWikitext-2の様々なデータセットを用いて最先端のスパーストレーニング結果を得る。
論文 参考訳(メタデータ) (2021-01-22T10:45:40Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks(SNN)は非同期離散イベント(スパイク)で動作する
本稿では,深層SNNのための計算効率のよいトレーニング手法を提案する。
我々は、SNN上のImageNetデータセットの65.19%のトップ1精度を250タイムステップで達成し、同様の精度で変換されたSNNに比べて10倍高速である。
論文 参考訳(メタデータ) (2020-05-04T19:30:43Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
プログレッシブニューラルネットワーク学習は、ネットワークのトポロジを漸進的に構築し、トレーニングデータに基づいてパラメータを最適化するアルゴリズムのクラスである。
段階的なトレーニングステップ毎にトレーニングデータのサブセットを活用することで,このプロセスの高速化を提案する。
オブジェクト,シーン,顔の認識における実験結果から,提案手法が最適化手順を大幅に高速化することを示す。
論文 参考訳(メタデータ) (2020-02-17T18:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。