論文の概要: Synthetic Face Ageing: Evaluation, Analysis and Facilitation of Age-Robust Facial Recognition Algorithms
- arxiv url: http://arxiv.org/abs/2406.06932v1
- Date: Mon, 10 Jun 2024 14:27:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 17:35:03.957390
- Title: Synthetic Face Ageing: Evaluation, Analysis and Facilitation of Age-Robust Facial Recognition Algorithms
- Title(参考訳): 顔の合成・分析・ファシリテーション : 顔の老化認識アルゴリズムの評価・分析・ファシリテーション
- Authors: Wang Yao, Muhammad Ali Farooq, Joseph Lemley, Peter Corcoran,
- Abstract要約: 顔認識モデルのロバスト性を向上させるため,合成年齢データの利用の可能性を検討する。
合成老化画像を用いた画像の認識率は, 年齢差40歳以上の画像において, ベースラインモデルの結果よりも3.33%高い値を示した。
- 参考スコア(独自算出の注目度): 1.0499611180329804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to accurately recognize an individual's face with respect to human aging factor holds significant importance for various private as well as government sectors such as customs and public security bureaus, passport office, and national database systems. Therefore, developing a robust age-invariant face recognition system is of crucial importance to address the challenges posed by ageing and maintain the reliability and accuracy of facial recognition technology. In this research work, the focus is to explore the feasibility of utilizing synthetic ageing data to improve the robustness of face recognition models that can eventually help in recognizing people at broader age intervals. To achieve this, we first design set of experiments to evaluate state-of-the-art synthetic ageing methods. In the next stage we explore the effect of age intervals on a current deep learning-based face recognition algorithm by using synthetic ageing data as well as real ageing data to perform rigorous training and validation. Moreover, these synthetic age data have been used in facilitating face recognition algorithms. Experimental results show that the recognition rate of the model trained on synthetic ageing images is 3.33% higher than the results of the baseline model when tested on images with an age gap of 40 years, which prove the potential of synthetic age data which has been quantified to enhance the performance of age-invariant face recognition systems.
- Abstract(参考訳): ヒトの老化要因に対する個人の顔を正確に認識する能力は、税関や治安局、パスポートオフィス、国立データベースシステムなど、様々な民間や政府機関にとって重要な意味を持つ。
したがって, 顔認識技術の信頼性と精度の維持と老化に伴う課題に対処するためには, 頑健な年齢不変顔認証システムの開発が重要である。
本研究は, より広い年齢層での認知に役立つ顔認識モデルの堅牢性を向上させるために, 合成老化データの利用の可能性を検討することを目的とする。
これを実現するために,我々はまず,最先端の合成時効法を評価するための実験セットを設計した。
次の段階では、合成年齢データと実年齢データを用いて、現在の深層学習に基づく顔認識アルゴリズムにおける年齢間隔の影響を調査し、厳密なトレーニングと検証を行う。
さらに、これらの合成年齢データは、顔認識アルゴリズムの促進に利用されてきた。
実験結果から, 年齢差40年画像を用いた場合, 合成年齢画像の認識率はベースラインモデルよりも3.33%高く, 年齢不変顔認識システムの性能を高めるために定量化されている合成年齢データの可能性が確認された。
関連論文リスト
- Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data [104.45155847778584]
本稿では,合成データ時代における第2回顔認識チャレンジの概要について述べる。
FRCSynは、現在の技術的制限に対処するために、顔認識における合成データの使用について調査することを目的としている。
論文 参考訳(メタデータ) (2024-04-16T08:15:10Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
大規模な顔認識データセットは、インターネットをクロールして個人の同意なしに収集し、法的、倫理的、プライバシー上の懸念を提起する。
近年、ウェブクローリングされた顔認識データセットにおける懸念を軽減するために、合成顔認識データセットの生成が提案されている。
本稿では,第18回IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)と共同で開催されているSynthetic Data for Face Recognition (SDFR)コンペティションの概要を紹介する。
SDFRコンペティションは2つのタスクに分けられ、参加者は新しい合成データセットまたは/または既存のデータセットを使用して顔認識システムを訓練することができる。
論文 参考訳(メタデータ) (2024-04-06T10:30:31Z) - IDiff-Face: Synthetic-based Face Recognition through Fizzy
Identity-Conditioned Diffusion Models [15.217324893166579]
合成データセットは、顔認識開発のためのプライバシーに敏感な認証データに代わる有望な選択肢として登場した。
IDiff-Faceは、顔認識訓練のための現実的なアイデンティティ変動を伴う合成ID生成のための条件付き潜時拡散モデルに基づく、新しいアプローチである。
論文 参考訳(メタデータ) (2023-08-09T14:48:31Z) - Will your Doorbell Camera still recognize you as you grow old [1.6536018920603175]
本研究は,顔認証法の性能に及ぼす年齢と加齢の影響について検討する。
様々な年齢効果を持つ高品質な顔画像の集合を拡大するために、フォトリアリスティックな年齢変換法が用いられている。
これらの合成老化データが高速深層学習に基づく顔認識モデルに与える影響を定量化する。
論文 参考訳(メタデータ) (2023-08-08T12:43:26Z) - Synthetic Data for Face Recognition: Current State and Future Prospects [14.288753326973984]
本研究の目的は,顔認識における合成顔データの利用事例を明確かつ構造化した画像を提供することである。
本稿では,顔認識における合成データの利用に直面する課題と,顔認識分野における合成データの今後の展望について論じる。
論文 参考訳(メタデータ) (2023-05-01T18:25:22Z) - Time flies by: Analyzing the Impact of Face Ageing on the Recognition
Performance with Synthetic Data [18.47822752527376]
本研究は,オープンソースのバイオメトリック認識システムの性能に及ぼす加齢の影響について考察する。
本研究の主目的は,1~5年間の短期年齢が一般認知能力にわずかに影響を及ぼすことである。
論文 参考訳(メタデータ) (2022-08-17T10:28:27Z) - LAE : Long-tailed Age Estimation [52.5745217752147]
まず、簡単な標準ベースラインを定式化し、事前トレーニング、データ拡張、モデルアーキテクチャなどのトリックを収集することで、はるかに強力なベースラインを構築します。
標準ベースラインと比較して,提案手法は推定誤差を著しく低減する。
本稿では,Long-tailed Age Estimation (LAE) という2段階の学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-25T09:05:44Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - FP-Age: Leveraging Face Parsing Attention for Facial Age Estimation in
the Wild [50.8865921538953]
年齢推定に顔のセマンティクスを明示的に組み込む手法を提案する。
我々は,顔解析に基づくネットワークを設計し,異なるスケールで意味情報を学習する。
提案手法は,既存の年齢推定手法を常に上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-21T14:31:32Z) - Continuous Face Aging via Self-estimated Residual Age Embedding [8.443742714362521]
本稿では,線形年齢推定器をGANモデルに組み込む統一ネットワーク構造を提案する。
埋め込み年齢推定器は、エンコーダおよびデコーダとの共同訓練を行い、顔画像の年齢を推定する。
パーソナライズされた目標年齢埋め込みは、現在の年齢のパーソナライズされた残存年齢埋め込みと、目標年齢の老化ベースの両方を組み込んで合成される。
論文 参考訳(メタデータ) (2021-04-30T18:06:17Z) - Age Gap Reducer-GAN for Recognizing Age-Separated Faces [72.26969872180841]
本稿では,年齢変化に伴う顔と時間変化をマッチングする新しいアルゴリズムを提案する。
提案手法は,顔の年齢推定と年齢別顔の検証を組み合わせた統合フレームワークである。
論文 参考訳(メタデータ) (2020-11-11T16:43:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。