論文の概要: Optimal Matrix-Mimetic Tensor Algebras via Variable Projection
- arxiv url: http://arxiv.org/abs/2406.06942v1
- Date: Tue, 11 Jun 2024 04:52:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 17:35:03.943785
- Title: Optimal Matrix-Mimetic Tensor Algebras via Variable Projection
- Title(参考訳): 可変射影による最適マトリックスミメティックテンソル代数
- Authors: Elizabeth Newman, Katherine Keegan,
- Abstract要約: 行列緩和性(Matrix mimeticity)は、テンソルを、行列に類似した乗算、分解、解析が可能な作用素として解釈することから生じる。
我々は、データの事前の知識に頼ることなく、最適線形写像と対応するテンソル表現を学習する。
可変射影型アルゴリズムの変換と収束解析の独創性理論を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in {matrix-mimetic} tensor frameworks have made it possible to preserve linear algebraic properties for multilinear data analysis and, as a result, to obtain optimal representations of multiway data. Matrix mimeticity arises from interpreting tensors as operators that can be multiplied, factorized, and analyzed analogous to matrices. Underlying the tensor operation is an algebraic framework parameterized by an invertible linear transformation. The choice of linear mapping is crucial to representation quality and, in practice, is made heuristically based on expected correlations in the data. However, in many cases, these correlations are unknown and common heuristics lead to suboptimal performance. In this work, we simultaneously learn optimal linear mappings and corresponding tensor representations without relying on prior knowledge of the data. Our new framework explicitly captures the coupling between the transformation and representation using variable projection. We preserve the invertibility of the linear mapping by learning orthogonal transformations with Riemannian optimization. We provide original theory of uniqueness of the transformation and convergence analysis of our variable-projection-based algorithm. We demonstrate the generality of our framework through numerical experiments on a wide range of applications, including financial index tracking, image compression, and reduced order modeling. We have published all the code related to this work at https://github.com/elizabethnewman/star-M-opt.
- Abstract(参考訳): 近年の<matrix-mimetic} テンソルフレームワークの進歩により、多線形データ解析のための線形代数特性の保存が可能となり、その結果、マルチウェイデータの最適な表現が得られるようになった。
行列緩和性(Matrix mimeticity)は、テンソルを、行列に類似した乗算、分解、解析が可能な作用素として解釈することから生じる。
テンソル演算の下方には、可逆線型変換によってパラメータ化される代数的フレームワークがある。
線形写像の選択は、表現品質にとって不可欠であり、実際には、データ内の期待される相関に基づいてヒューリスティックに作成される。
しかし、多くの場合、これらの相関関係は未知であり、一般的なヒューリスティックスは最適以下の性能をもたらす。
本研究では,データの事前知識に頼ることなく,最適線形写像と対応するテンソル表現を同時に学習する。
我々の新しいフレームワークは、変数プロジェクションを使用して変換と表現の結合を明示的にキャプチャします。
我々はリーマン最適化を用いて直交変換を学習することで線型写像の可逆性を保っている。
可変射影型アルゴリズムの変換と収束解析の独創性理論を提供する。
金融指標追跡,画像圧縮,縮小順序モデリングなど,幅広い応用の数値実験を通じて,我々のフレームワークの汎用性を実証する。
この作業に関連するすべてのコードは、https://github.com/elizabethnewman/star-M-opt.comで公開しています。
関連論文リスト
- Symmetry Discovery for Different Data Types [52.2614860099811]
等価ニューラルネットワークは、そのアーキテクチャに対称性を取り入れ、より高度な一般化性能を実現する。
本稿では,タスクの入出力マッピングを近似したトレーニングニューラルネットワークによる対称性発見手法であるLieSDを提案する。
我々は,2体問題,慣性行列予測のモーメント,トップクォークタグ付けといった課題におけるLieSDの性能を検証した。
論文 参考訳(メタデータ) (2024-10-13T13:39:39Z) - Projected Tensor-Tensor Products for Efficient Computation of Optimal Multiway Data Representations [0.0]
本稿では,計算オーバーヘッドを低減するために可逆性制限を緩和する新しいテンソルテンソル製品を提案する。
予測された製品フレームワーク内での圧縮表現の行列緩和性と最適性を証明する理論を提供する。
論文 参考訳(メタデータ) (2024-09-28T16:29:54Z) - Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
論文 参考訳(メタデータ) (2024-07-15T07:11:44Z) - FineMorphs: Affine-diffeomorphic sequences for regression [1.1421942894219896]
モデル状態は学習中に滑らかなベクトル場によって生成される微分同相によって最適に「再形」される。
アフィン変換とベクトル場は最適制御設定内で最適化される。
このモデルは次元を自然に減らし(あるいは増大させる)、最適なベクトル場を通して大きなデータセットに適応することができる。
論文 参考訳(メタデータ) (2023-05-26T20:54:18Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - Nonparametric Trace Regression in High Dimensions via Sign Series
Representation [13.37650464374017]
高次元関数の構造的符号系列表現による非パラメトリックトレース回帰モデルのためのフレームワークを開発する。
行列完備化の文脈において、我々のフレームワークは、行列の「符号ランク」と呼ばれるものに基づいて、かなりリッチなモデルへと導かれる。
論文 参考訳(メタデータ) (2021-05-04T22:20:00Z) - Supervised Quantile Normalization for Low-rank Matrix Approximation [50.445371939523305]
我々は、$X$ の値と $UV$ の値を行ワイズで操作できる量子正規化演算子のパラメータを学習し、$X$ の低ランク表現の質を改善する。
本稿では,これらの手法が合成およびゲノムデータセットに適用可能であることを実証する。
論文 参考訳(メタデータ) (2020-02-08T21:06:02Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
学生自明なシナリオにおいて,大ガウス潜在変数モデルを用いて近似推論のアルゴリズムを解析する。
完全データモデルマッチングの場合、レプリカ法から派生した静的順序パラメータの知識により、効率的なアルゴリズム更新が得られる。
論文 参考訳(メタデータ) (2020-01-14T17:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。