論文の概要: Sparse Bayesian Networks: Efficient Uncertainty Quantification in Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2406.06946v1
- Date: Tue, 11 Jun 2024 05:12:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 17:35:03.937987
- Title: Sparse Bayesian Networks: Efficient Uncertainty Quantification in Medical Image Analysis
- Title(参考訳): スパースベイズネットワーク:医用画像解析における効率的な不確実性定量化
- Authors: Zeinab Abboud, Herve Lombaert, Samuel Kadoury,
- Abstract要約: 疎(部分)ベイズネットワークのトレーニング手順を導入する。
両表現の利点を利用して高いタスク固有性能を実現し,予測の不確実性を最小化する。
提案手法はベイズパラメータを95%以上削減し,競合性能と予測不確実性を推定する。
- 参考スコア(独自算出の注目度): 4.898968729173388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently quantifying predictive uncertainty in medical images remains a challenge. While Bayesian neural networks (BNN) offer predictive uncertainty, they require substantial computational resources to train. Although Bayesian approximations such as ensembles have shown promise, they still suffer from high training and inference costs. Existing approaches mainly address the costs of BNN inference post-training, with little focus on improving training efficiency and reducing parameter complexity. This study introduces a training procedure for a sparse (partial) Bayesian network. Our method selectively assigns a subset of parameters as Bayesian by assessing their deterministic saliency through gradient sensitivity analysis. The resulting network combines deterministic and Bayesian parameters, exploiting the advantages of both representations to achieve high task-specific performance and minimize predictive uncertainty. Demonstrated on multi-label ChestMNIST for classification and ISIC, LIDC-IDRI for segmentation, our approach achieves competitive performance and predictive uncertainty estimation by reducing Bayesian parameters by over 95\%, significantly reducing computational expenses compared to fully Bayesian and ensemble methods.
- Abstract(参考訳): 医用画像の予測不確実性を効果的に定量化することは依然として課題である。
ベイズニューラルネットワーク(BNN)は予測の不確実性を提供するが、訓練にはかなりの計算資源が必要である。
アンサンブルのようなベイズ近似は将来性を示しているが、それでも高い訓練と推論コストに悩まされている。
既存のアプローチは、トレーニング後のBNN推論のコストに主に対処するが、トレーニング効率の改善とパラメータの複雑さの低減にはほとんど重点を置いていない。
本研究では,疎(部分)ベイズネットワークのトレーニング手順を紹介する。
本手法は,パラメータのサブセットを勾配感度解析により決定論的サリエンシを評価することでベイズ的パラメータとして選択的に割り当てる。
結果として得られるネットワークは決定論的パラメータとベイズ的パラメータを結合し、両方の表現の利点を利用して高いタスク固有の性能を達成し、予測の不確実性を最小化する。
セグメンテーションのための多ラベルChestMNIST,ISIC,LIDC-IDRI,セグメンテーションのためのLIDC-IDRIを用いて,ベイズパラメータを95%以上削減し,完全ベイズおよびアンサンブル法と比較して計算コストを大幅に削減することで,競合性能と予測不確実性の推定を実現した。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
本稿では,崩壊サンプルを用いたベイズモデル平均化を行う新しい崩壊予測手法を提案する。
崩壊したサンプルは、近似後部から引き出された数え切れないほど多くのモデルを表す。
提案手法は, スケーラビリティと精度のバランスをとる。
論文 参考訳(メタデータ) (2023-06-16T08:34:42Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Efficient Bayes Inference in Neural Networks through Adaptive Importance
Sampling [19.518237361775533]
BNNでは、トレーニング段階で、未知の重みとバイアスパラメータの完全な後部分布が生成される。
この機能は、数え切れないほどの機械学習アプリケーションに役立ちます。
医療医療や自動運転など、意思決定に重大な影響を及ぼす分野において特に魅力的である。
論文 参考訳(メタデータ) (2022-10-03T14:59:23Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
本研究では,凍結モデルに対するベイズIDマッピングを学習し,不確実性の推定を可能にするBayesCapを提案する。
BayesCapは、元のデータセットのごく一部でトレーニングできる、メモリ効率のよいメソッドである。
本稿では,多種多様なアーキテクチャを用いた多種多様なタスクに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-07-14T12:50:09Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
決定論的不確実性法(DUM)は,分布外データの検出において高い性能を達成する。
DUMが十分に校正されており、現実のアプリケーションにシームレスにスケールできるかどうかは不明だ。
論文 参考訳(メタデータ) (2021-07-01T17:59:07Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。