論文の概要: Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey
- arxiv url: http://arxiv.org/abs/2406.06965v1
- Date: Tue, 11 Jun 2024 05:48:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 17:25:19.099044
- Title: Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey
- Title(参考訳): 単一モーダルから多モーダル顔面深度検出への展開:調査
- Authors: Ping Liu, Qiqi Tao, Joey Tianyi Zhou,
- Abstract要約: AI生成メディアがより現実的になるにつれて、誤情報を拡散したり、身元確認詐欺を犯したりする危険性が高まっている。
この研究は、従来の単一モダリティ手法から、音声・視覚・テキスト・視覚シナリオを扱う高度なマルチモーダルアプローチへの進化を辿る。
私たちの知る限りでは、この種の調査はこれが初めてである。
- 参考スコア(独自算出の注目度): 40.11614155244292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This survey addresses the critical challenge of deepfake detection amidst the rapid advancements in artificial intelligence. As AI-generated media, including video, audio and text, become more realistic, the risk of misuse to spread misinformation and commit identity fraud increases. Focused on face-centric deepfakes, this work traces the evolution from traditional single-modality methods to sophisticated multi-modal approaches that handle audio-visual and text-visual scenarios. We provide comprehensive taxonomies of detection techniques, discuss the evolution of generative methods from auto-encoders and GANs to diffusion models, and categorize these technologies by their unique attributes. To our knowledge, this is the first survey of its kind. We also explore the challenges of adapting detection methods to new generative models and enhancing the reliability and robustness of deepfake detectors, proposing directions for future research. This survey offers a detailed roadmap for researchers, supporting the development of technologies to counter the deceptive use of AI in media creation, particularly facial forgery. A curated list of all related papers can be found at \href{https://github.com/qiqitao77/Comprehensive-Advances-in-Deepfake-Detection-Spanning-Diverse-Modalitie s}{https://github.com/qiqitao77/Awesome-Comprehensive-Deepfake-Detection}.
- Abstract(参考訳): この調査は、人工知能の急速な進歩の中で、ディープフェイク検出の重要な課題に対処する。
ビデオ、音声、テキストを含むAI生成メディアがより現実的になるにつれて、誤情報を拡散したり、身元確認詐欺を犯すリスクが高まる。
顔中心のディープフェイクに焦点を当てたこの研究は、従来の単一モダリティ手法から、オーディオ視覚とテキスト視覚のシナリオを扱う高度なマルチモーダルアプローチへの進化を辿る。
本稿では,検出手法の包括的分類法を提供し,自動エンコーダやGANから拡散モデルへの生成手法の進化を論じ,それらの特性によってこれらの技術を分類する。
私たちの知る限りでは、この種の調査はこれが初めてである。
また、新しい生成モデルに検出手法を適用することの課題や、ディープフェイク検出器の信頼性と堅牢性の向上、今後の研究に向けての方向性についても検討する。
この調査は研究者に詳細なロードマップを提供し、メディア生成、特に顔の偽造にAIを欺くことに対処する技術開発を支援している。
すべての関連論文のキュレートされたリストは \href{https://github.com/qiqitao77/Comprehensive-Advances-in-Deepfake-Detection-Spanning-Diverse-Modalitie s}{https://github.com/qiqitao77/Awesome-Comprehensive-Deepfake-Detection} にある。
関連論文リスト
- Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
ディープラーニングは様々な分野に適用され、ディープフェイク検出への影響は例外ではない。
ディープフェイク(英: Deepfakes)は、政治的偽造、フィッシング、スランダリング、偽情報の拡散に偽装的に使用できる、偽物だが現実的な合成コンテンツである。
本稿では,ディープフェイク検出戦略の有効性を改善し,サイバーセキュリティとメディアの整合性に関する今後の研究を導くことを目的とする。
論文 参考訳(メタデータ) (2024-11-12T09:02:11Z) - DiffusionFake: Enhancing Generalization in Deepfake Detection via Guided Stable Diffusion [94.46904504076124]
ディープフェイク技術は、顔交換を極めて現実的にし、偽造された顔コンテンツの使用に対する懸念を高めている。
既存の方法は、顔操作の多様な性質のため、目に見えない領域に一般化するのに苦労することが多い。
顔偽造者の生成過程を逆転させて検出モデルの一般化を促進する新しいフレームワークであるDiffusionFakeを紹介する。
論文 参考訳(メタデータ) (2024-10-06T06:22:43Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
ディープラーニングにより、高忠実度顔画像やビデオの作成や操作が可能になった。
この技術はディープフェイクとしても知られ、劇的な進歩を遂げ、ソーシャルメディアで人気を博している。
ディープフェイクのリスクを低減するため、強力な偽造検出方法を開発することが望ましい。
論文 参考訳(メタデータ) (2024-09-22T01:42:01Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
論文 参考訳(メタデータ) (2024-08-01T08:57:47Z) - Conditioned Prompt-Optimization for Continual Deepfake Detection [11.634681724245933]
本稿では,Pmpt2Guardについて紹介する。
我々は,読み出し専用プロンプトを用いた予測アンサンブル手法を活用し,複数のフォワードパスの必要性を軽減した。
提案手法は,ディープフェイク検出に適したテキスト・プロンプト・コンディショニングを利用する。
論文 参考訳(メタデータ) (2024-07-31T12:22:57Z) - The Tug-of-War Between Deepfake Generation and Detection [4.62070292702111]
マルチモーダル生成モデルは急速に進化しており、現実的なビデオやオーディオの生成が急増している。
ディープフェイクビデオは、個人を説得力を持って偽造することができるが、悪用の可能性から特に注目を集めている。
本研究では,ディープフェイク映像の生成と検出の両面を考察し,効果的な対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-07-08T17:49:41Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfakeは、特定の条件下で非常にリアルな顔画像やビデオを作成するための技術だ。
この調査は、ディープフェイクの発生と検出の最新の展開を包括的にレビューする。
本研究では, 顔交換, 顔再現, 話し顔生成, 顔属性編集の4つの代表的なディープフェイク分野の研究に焦点をあてる。
論文 参考訳(メタデータ) (2024-03-26T17:12:34Z) - Deepfakes Generation and Detection: State-of-the-art, open challenges,
countermeasures, and way forward [2.15242029196761]
不正情報、リベンジポルノ、金融詐欺、詐欺、政府機能を妨害するディープフェイクを発生させることが可能である。
オーディオとビデオの両方のディープフェイクの検出と生成のアプローチをレビューする試みは行われていない。
本稿では、deepfake生成のための既存のツールと機械学習(ml)ベースのアプローチの包括的なレビューと詳細な分析を提供する。
論文 参考訳(メタデータ) (2021-02-25T18:26:50Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。