RS-Agent: Automating Remote Sensing Tasks through Intelligent Agent
- URL: http://arxiv.org/abs/2406.07089v2
- Date: Sat, 17 May 2025 10:54:58 GMT
- Title: RS-Agent: Automating Remote Sensing Tasks through Intelligent Agent
- Authors: Wenjia Xu, Zijian Yu, Boyang Mu, Zhiwei Wei, Yuanben Zhang, Guangzuo Li, Mugen Peng,
- Abstract summary: RS-Agent is an AI agent designed to interact with human users and autonomously leverage specialized models.<n> RS-Agent integrates four key components: a Central Controller based on large language models, a dynamic toolkit for tool execution, a Solution Space for task-specific expert guidance, and a Knowledge Space for domain-level reasoning.<n>Extensive experiments across 9 datasets and 18 remote sensing tasks demonstrate that RS-Agent significantly outperforms state-of-the-art MLLMs.
- Score: 15.836845304125436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The unprecedented advancements in Multimodal Large Language Models (MLLMs) have demonstrated strong potential in interacting with humans through both language and visual inputs to perform downstream tasks such as visual question answering and scene understanding. However, these models are constrained to basic instruction-following or descriptive tasks, facing challenges in complex real-world remote sensing applications that require specialized tools and knowledge. To address these limitations, we propose RS-Agent, an AI agent designed to interact with human users and autonomously leverage specialized models to address the demands of real-world remote sensing applications. RS-Agent integrates four key components: a Central Controller based on large language models, a dynamic toolkit for tool execution, a Solution Space for task-specific expert guidance, and a Knowledge Space for domain-level reasoning, enabling it to interpret user queries and orchestrate tools for accurate remote sensing task. We introduce two novel mechanisms: Task-Aware Retrieval, which improves tool selection accuracy through expert-guided planning, and DualRAG, a retrieval-augmented generation method that enhances knowledge relevance through weighted, dual-path retrieval. RS-Agent supports flexible integration of new tools and is compatible with both open-source and proprietary LLMs. Extensive experiments across 9 datasets and 18 remote sensing tasks demonstrate that RS-Agent significantly outperforms state-of-the-art MLLMs, achieving over 95% task planning accuracy and delivering superior performance in tasks such as scene classification, object counting, and remote sensing visual question answering. Our work presents RS-Agent as a robust and extensible framework for advancing intelligent automation in remote sensing analysis.
Related papers
- State and Memory is All You Need for Robust and Reliable AI Agents [29.259008600842517]
Large language models (LLMs) have enabled powerful advances in natural language understanding and generation.<n>Yet their application to complex, real-world scientific remain limited by challenges in memory, planning, and tool integration.<n>Here, we introduce SciBORG, a modular agentic framework that allows LLM-based agents to autonomously plan, reason, and achieve robust and reliable domain-specific task execution.
arXiv Detail & Related papers (2025-06-30T02:02:35Z) - LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback [121.78866929908871]
Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data.<n>We present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback.<n>Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback.
arXiv Detail & Related papers (2025-06-02T22:36:02Z) - ThinkGeo: Evaluating Tool-Augmented Agents for Remote Sensing Tasks [54.52092001110694]
ThinkGeo is a benchmark designed to evaluate tool-augmented agents on remote sensing tasks via structured tool use and multi-step planning.<n>Inspired by tool-interaction paradigms, ThinkGeo includes human-curated queries spanning a wide range of real-world applications.<n>Our analysis reveals notable disparities in tool accuracy and planning consistency across models.
arXiv Detail & Related papers (2025-05-29T17:59:38Z) - Bring Remote Sensing Object Detect Into Nature Language Model: Using SFT Method [10.748210940033484]
Large language models (LLMs) and vision-language models (VLMs) have achieved significant success.
Due to the substantial differences between remote sensing images and conventional optical images, these models face challenges in comprehension.
This letter explores the application of VLMs for object detection in remote sensing images.
arXiv Detail & Related papers (2025-03-11T08:02:54Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space.<n>MeCo is fine-tuning-free and incurs minimal cost.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining [67.87810796668981]
Information-Sensitive Cropping (ISC) and Self-Refining Dual Learning (SRDL)
Iris achieves state-of-the-art performance across multiple benchmarks with only 850K GUI annotations.
These improvements translate to significant gains in both web and OS agent downstream tasks.
arXiv Detail & Related papers (2024-12-13T18:40:10Z) - RSUniVLM: A Unified Vision Language Model for Remote Sensing via Granularity-oriented Mixture of Experts [17.76606110070648]
We propose RSUniVLM, a unified, end-to-end RS VLM for comprehensive vision understanding across multiple granularity.
RSUniVLM performs effectively in multi-image analysis, with instances of change detection and change captioning.
We also construct a large-scale RS instruction-following dataset based on a variety of existing datasets in both RS and general domain.
arXiv Detail & Related papers (2024-12-07T15:11:21Z) - MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification [5.666070277424383]
MAG-V is a framework to generate a dataset of questions that mimic customer queries.<n>Our synthetic data can improve agent performance on actual customer queries.
arXiv Detail & Related papers (2024-11-28T19:36:11Z) - SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agents.
SPA-Bench offers three key contributions: A diverse set of tasks covering system and third-party apps in both English and Chinese, focusing on features commonly used in daily routines.
A novel evaluation pipeline that automatically assesses agent performance across multiple dimensions, encompassing seven metrics related to task completion and resource consumption.
arXiv Detail & Related papers (2024-10-19T17:28:48Z) - Agent S: An Open Agentic Framework that Uses Computers Like a Human [31.16046798529319]
We present Agent S, an open agentic framework that enables autonomous interaction with computers through a Graphical User Interface (GUI)
Agent S aims to address three key challenges in automating computer tasks: acquiring domain-specific knowledge, planning over long task horizons, and handling dynamic, non-uniform interfaces.
arXiv Detail & Related papers (2024-10-10T17:43:51Z) - RSTeller: Scaling Up Visual Language Modeling in Remote Sensing with Rich Linguistic Semantics from Openly Available Data and Large Language Models [3.178739428363249]
We propose a workflow to generate multimodal datasets with semantically rich captions at scale from plain OpenStreetMap (OSM) data for images sourced from the Google Earth Engine (GEE) platform.
Within this framework, we present RSTeller, a multimodal dataset comprising over 1 million RS images, each accompanied by multiple descriptive captions.
arXiv Detail & Related papers (2024-08-27T02:45:26Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents.
Existing benchmarks fail to sufficiently challenge or showcase the full potential of LMMs in complex, real-world environments.
VisualAgentBench (VAB) is a pioneering benchmark specifically designed to train and evaluate LMMs as visual foundation agents.
arXiv Detail & Related papers (2024-08-12T17:44:17Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - Multi-Agent VQA: Exploring Multi-Agent Foundation Models in Zero-Shot Visual Question Answering [48.7363941445826]
We propose an adaptive multi-agent system, named Multi-Agent VQA, to overcome the limitations of foundation models in object detection and counting.
We present preliminary experimental results under zero-shot scenarios and highlight some failure cases, offering new directions for future research.
arXiv Detail & Related papers (2024-03-21T18:57:25Z) - VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks [93.85005277463802]
VisualWebArena is a benchmark designed to assess the performance of multimodal web agents on realistic tasks.
To perform on this benchmark, agents need to accurately process image-text inputs, interpret natural language instructions, and execute actions on websites to accomplish user-defined objectives.
arXiv Detail & Related papers (2024-01-24T18:35:21Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks.
Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation.
arXiv Detail & Related papers (2024-01-21T23:36:14Z) - SkyEyeGPT: Unifying Remote Sensing Vision-Language Tasks via Instruction
Tuning with Large Language Model [12.19132018279148]
We introduce SkyEyeGPT, a unified multi-modal large language model specifically designed for RS vision-language understanding.
With a simple yet effective design, SkyEyeGPT works surprisingly well on considerably different tasks without the need for extra encoding modules.
Experiments on 8 datasets for RS vision-language tasks demonstrate SkyEyeGPT's superiority in image-level and region-level tasks.
arXiv Detail & Related papers (2024-01-18T04:10:20Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - GeoChat: Grounded Large Vision-Language Model for Remote Sensing [65.78360056991247]
We propose GeoChat - the first versatile remote sensing Large Vision-Language Models (VLMs) that offers multitask conversational capabilities with high-resolution RS images.
Specifically, GeoChat can answer image-level queries but also accepts region inputs to hold region-specific dialogue.
GeoChat demonstrates robust zero-shot performance on various RS tasks, e.g., image and region captioning, visual question answering, scene classification, visually grounded conversations and referring detection.
arXiv Detail & Related papers (2023-11-24T18:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.