Compact Polarization-Entangled Photon Source Based on Coexisting Noncritically Birefringent and Quasi Phase Matching in a Nonlinear Crystal
- URL: http://arxiv.org/abs/2406.07122v1
- Date: Tue, 11 Jun 2024 10:10:33 GMT
- Title: Compact Polarization-Entangled Photon Source Based on Coexisting Noncritically Birefringent and Quasi Phase Matching in a Nonlinear Crystal
- Authors: C. -Y. Yang, C. -Y. Wang, K. -H. Lin, T. -Y. Tsai, C. -C. Lin, C. Canalias, L. -B. Wang, A. Yabushita, C. -S. Chuu,
- Abstract summary: We show a novel source that generates collinear polarization-entangled photons in a periodically poled nonlinear crystal.
The compact source does not require interferometer, delicate domain structures, or post selection, and is advantageous for scalable quantum computing and communication.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Polarization-entangled photons are indispensable to numerous quantum technologies and fundamental studies. In this paper, we propose and demonstrate a novel source that generates collinear polarization-entangled photons by simultaneously achieving two distinct types of phase-matching conditions (noncritically birefringent and quasi phase matching) in a periodically poled nonlinear crystal with a large poling period of 2 mm. The photon pairs are generated in a polarization-entangled state with a fidelity and concurrence of 0.998 and 0.935, respectively, and violate the Clauser-Horne-Shimony-Holt inequality by 84 standard deviations. The compact source does not require interferometer, delicate domain structures, or post selection, and is advantageous for scalable quantum computing and communication, where many replicas or chip-scale devices are needed.
Related papers
- Robust and bright polarization-entangled photon sources exploiting non-critical phase matching without periodic poling [0.7378853859331619]
Periodically poled (PP) crystals are commonly used to generate bright photon sources through quasi-phase matching.
Here, we adopt non-critical phase matching to produce a robust and bright polarization-entangled photon source based on a Sagnac interferometer.
We experimentally produce the four Bell states with a brightness of 25.1 kHz/mW, achieving purity, concurrence, and fidelity values close to 0.99.
arXiv Detail & Related papers (2024-09-12T00:28:53Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Single-pass generation of widely-tunable frequency-domain entangled
photon pairs [0.0]
We demonstrate a technique that generates frequency-entangled photon pairs with high polarization definition by using a single-period nonlinear crystal and single pass configuration.
The generated photon pairs exhibit non-degenerate Hong-Ou-Mandel interference, indicating the presence of quantum entanglement in the frequency domain.
arXiv Detail & Related papers (2023-08-30T02:43:33Z) - Polarization engineering of entangled photons from a lithium niobate
nonlinear metasurface [4.763175424744536]
Complex polarization states of photon pairs are indispensable in various quantum technologies.
We present a solution using a nonlinear metasurface incorporating multiplexed silica metagratings on a lithium niobate film of 300 nanometer thickness.
arXiv Detail & Related papers (2023-08-28T01:59:28Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Generation of spectrally factorable photon pairs via multi-order
quasi-phase-matched spontaneous parametric downconversion [0.0]
We experimentally demonstrate a technique to produce spectrally factorable photon pairs utilizing multi-order quasi-phase-matching conditions.
We show that telecom-band photon pairs produced by our custom-poled crystal are highly factorable with > 95% single-photon purity.
arXiv Detail & Related papers (2021-11-22T04:17:24Z) - Multipartite spatial entanglement generated by concurrent nonlinear
processes [91.3755431537592]
Continuous variables multipartite entanglement is a key resource for quantum technologies.
This work considers the multipartite entanglement generated in separated spatial modes of the same light beam by three different parametric sources.
arXiv Detail & Related papers (2021-11-09T17:15:13Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Sagnac-type entangled photon source using only conventional polarization
optics [0.0]
We demonstrate the pulsed generation of polarization-entangled photon-pairs at wavelengths of 764nm and 1221nm via type-I spontaneous four-wave mixing in a polarization-maintaining fiber.
The long-term phase-stability was characterized by an Allan deviation of 8$circ$ over an integration time of about 1 hour with no active phase-stabilization.
arXiv Detail & Related papers (2020-07-09T22:13:30Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.