Sagnac-type entangled photon source using only conventional polarization
optics
- URL: http://arxiv.org/abs/2007.05095v1
- Date: Thu, 9 Jul 2020 22:13:30 GMT
- Title: Sagnac-type entangled photon source using only conventional polarization
optics
- Authors: Youn Seok Lee (1), Mengyu Xie (1 and 2), Ramy Tannous (1) and Thomas
Jennewein (1) ((1) Institute for quantum computing, University of Waterloo,
(2) State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua
University)
- Abstract summary: We demonstrate the pulsed generation of polarization-entangled photon-pairs at wavelengths of 764nm and 1221nm via type-I spontaneous four-wave mixing in a polarization-maintaining fiber.
The long-term phase-stability was characterized by an Allan deviation of 8$circ$ over an integration time of about 1 hour with no active phase-stabilization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We designed and implemented a novel combination of a Sagnac-interferometer
with a Mach-Zehnder interferometer for a source of polarization-entangled
photons. The new versatile configuration does not require multi-wavelength
polarization optics, yet it performs with a good polarization quality and
phase-stability over a wide wavelength range. We demonstrate the interferometer
using only standard commercial optics to experimentally realize the pulsed
generation of polarization-entangled photon-pairs at wavelengths of 764nm and
1221nm via type-I spontaneous four-wave mixing in a polarization-maintaining
fiber. Polarization entanglement was verified by a polarization-correlation
measurement with a visibility of 95.5% from raw coincidence counts and the
violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality with
$S=2.70\pm0.04$. The long-term phase-stability was characterized by an Allan
deviation of 8$^\circ$ over an integration time of about 1 hour with no active
phase-stabilization.
Related papers
- Ultrabright fiber-coupled ploarization-entangled photon source with spectral brightness surpassing 2.0 MHz/mW/nm [0.6581049960856515]
We present an ultrabright polarization-entangled photon source that is optimally coupled into single-mode fibers.
By employing a simple mode-matching optical setup, we optimize the SMF coupling and heralding efficiencies of the photon-pairs.
This represents the highest spectral brightness of SPDC photons generated using a CW laser pumped bulk crystal to date.
arXiv Detail & Related papers (2024-09-23T23:50:03Z) - Compact Polarization-Entangled Photon Source Based on Coexisting Noncritically Birefringent and Quasi Phase Matching in a Nonlinear Crystal [0.0]
We show a novel source that generates collinear polarization-entangled photons in a periodically poled nonlinear crystal.
The compact source does not require interferometer, delicate domain structures, or post selection, and is advantageous for scalable quantum computing and communication.
arXiv Detail & Related papers (2024-06-11T10:10:33Z) - Polarization Entanglement with highly non-degenerate photon pairs enhanced by effective walk-off compensation method [0.0]
We demonstrate polarization entanglement in non-degenerate photon pairs using bulk periodically poled Lithium Niobate (PPLN) crystals.
We introduce an effective compensation method using birefringent crystal wedges to eliminate spatial and temporal walkoffs simultaneously.
arXiv Detail & Related papers (2024-05-10T18:12:51Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Non-local polarization alignment and control in fiber using feedback
from correlated measurements of entangled photons [0.7174734306558701]
Quantum measurements that use the entangled photons' polarization to encode quantum information require calibration and alignment of the measurement bases.
We report here a fast method for automatic alignment and dynamic tracking of the polarization measurement bases between spatially separated detectors.
arXiv Detail & Related papers (2022-09-14T20:37:00Z) - Flat-optics generation of broadband photon pairs with tunable
polarization entanglement [0.0]
Polarization entanglement is central to quantum photonics due to the simplicity of polarization qubit encoding and control.
We use relaxed phase matching of flat nonlinear optical sources to generate photon pairs with tunable polarization entanglement.
In combination with the broadband frequency spectrum, it results in an ultranarrow (12 fs) Hong-Ou-Mandel effect and promises extensions to hyperentanglement.
arXiv Detail & Related papers (2022-01-24T08:24:51Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Temperature insensitive type II quasi-phasematched spontaneous
parametric downconversion [62.997667081978825]
The temperature dependence of the refractive indices of potassium titanyl phosphate (KTP) are shown to enable quasi-phasematched type II spontaneous parametric downconversion.
We demonstrate the effect experimentally, observing temperature-insensitive degenerate emission at 1326nm, within the telecommunications O band.
This result has practical applications in the development of entangled photon sources for resource-constrained environments.
arXiv Detail & Related papers (2020-12-09T16:14:15Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Understanding photoluminescence in semiconductor Bragg-reflection
waveguides: Towards an integrated, GHz-rate telecom photon pair source [47.399953444625154]
semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials.
We show that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns.
We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values.
arXiv Detail & Related papers (2020-10-12T06:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.