論文の概要: Haptic Repurposing with GenAI
- arxiv url: http://arxiv.org/abs/2406.07228v1
- Date: Tue, 11 Jun 2024 13:06:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 16:03:55.289013
- Title: Haptic Repurposing with GenAI
- Title(参考訳): GenAIによるハプティックリパース
- Authors: Haoyu Wang,
- Abstract要約: Mixed Realityは、デジタル世界と物理的な世界を融合して、没入型人間とコンピュータのインタラクションを作ることを目指している。
本稿では,Haptic Repurposing with GenAIを紹介し,任意の物理オブジェクトをAI生成仮想アセットの適応型触覚インターフェースに変換することによってMRインタラクションを強化する革新的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 5.424247121310253
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mixed Reality aims to merge the digital and physical worlds to create immersive human-computer interactions. Despite notable advancements, the absence of realistic haptic feedback often breaks the immersive experience by creating a disconnect between visual and tactile perceptions. This paper introduces Haptic Repurposing with GenAI, an innovative approach to enhance MR interactions by transforming any physical objects into adaptive haptic interfaces for AI-generated virtual assets. Utilizing state-of-the-art generative AI models, this system captures both 2D and 3D features of physical objects and, through user-directed prompts, generates corresponding virtual objects that maintain the physical form of the original objects. Through model-based object tracking, the system dynamically anchors virtual assets to physical props in real time, allowing objects to visually morph into any user-specified virtual object. This paper details the system's development, presents findings from usability studies that validate its effectiveness, and explores its potential to significantly enhance interactive MR environments. The hope is this work can lay a foundation for further research into AI-driven spatial transformation in immersive and haptic technologies.
- Abstract(参考訳): Mixed Realityは、デジタル世界と物理的な世界を融合して、没入型人間とコンピュータのインタラクションを作ることを目指している。
顕著な進歩にもかかわらず、現実的な触覚フィードバックの欠如は、視覚的知覚と触覚的知覚を分離することによって没入感を損なうことが多い。
本稿では,Haptic Repurposing with GenAIを紹介し,任意の物理オブジェクトをAI生成仮想アセットの適応型触覚インターフェースに変換することによってMRインタラクションを強化する革新的なアプローチを提案する。
このシステムは、最先端の生成AIモデルを利用することで、物理オブジェクトの2次元特徴と3次元特徴の両方をキャプチャし、ユーザ指向のプロンプトを通じて、元のオブジェクトの物理形式を維持する対応する仮想オブジェクトを生成する。
モデルベースのオブジェクトトラッキングにより、システムは動的に仮想アセットを物理プロップにリアルタイムで固定し、オブジェクトを視覚的にユーザ指定の仮想オブジェクトに変形させることができる。
本稿では,システム開発について詳述し,その有効性を検証するユーザビリティ研究の成果を提示し,対話型MR環境を著しく向上させる可能性を探る。
この研究は、没入型および触覚的技術におけるAI駆動型空間変換のさらなる研究の基盤となることを期待している。
関連論文リスト
- Dynamic Reconstruction of Hand-Object Interaction with Distributed Force-aware Contact Representation [52.36691633451968]
ViTaM-Dは動的手動物体相互作用再構成のための視覚触覚フレームワークである。
DF-Fieldは分散力認識型接触表現モデルである。
剛性および変形性のある物体再構成におけるViTaM-Dの優れた性能について検討した。
論文 参考訳(メタデータ) (2024-11-14T16:29:45Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamerは物理に基づくアプローチで、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える。
本稿では, 弾性物体の多様な例について考察し, ユーザスタディを通じて合成された相互作用の現実性を評価する。
論文 参考訳(メタデータ) (2024-04-19T17:41:05Z) - VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality [39.53150683721031]
提案するVR-GSシステムは,人間中心の3Dコンテンツインタラクションにおける飛躍的な進歩を示す。
私たちの仮想現実システムのコンポーネントは、高い効率と有効性のために設計されています。
論文 参考訳(メタデータ) (2024-01-30T01:28:36Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
我々はVR/ARにおける自然的および直感的な力入力のための学習ベースのニューラルネットワークを設計する。
我々は,3.3%の平均誤差で指の力量をリアルタイムでデコードし,キャリブレーションの少ない新規ユーザに一般化できることを実証した。
今後のVR/ARにおける、より現実的な物理性に向けた研究を進めるために、我々の研究成果を期待する。
論文 参考訳(メタデータ) (2022-10-03T20:51:25Z) - Learning Intuitive Physics with Multimodal Generative Models [24.342994226226786]
本稿では,視覚と触覚のフィードバックを融合させ,動的シーンにおける物体の動きを予測する枠組みを提案する。
我々は、接触面の高解像度マルチモーダルセンシングを提供する新しいSee-Through-your-Skin(STS)センサを使用します。
物体の静止状態を所定の初期条件から予測するシミュレーションおよび実世界の実験を通じて検証する。
論文 参考訳(メタデータ) (2021-01-12T12:55:53Z) - iGibson, a Simulation Environment for Interactive Tasks in Large
Realistic Scenes [54.04456391489063]
iGibsonは、大規模な現実的なシーンにおける対話的なタスクのためのロボットソリューションを開発するための、新しいシミュレーション環境である。
私たちの環境には、厳密で明瞭な物体が密集した15のインタラクティブなホームサイズシーンが含まれています。
iGibsonの機能はナビゲーションエージェントの一般化を可能にし、人間-iGibsonインターフェースと統合されたモーションプランナーは、単純な人間の実演行動の効率的な模倣学習を促進する。
論文 参考訳(メタデータ) (2020-12-05T02:14:17Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
エージェントが世界と対話することを学ぶための鍵となる課題は、オブジェクトの物理的性質を推論することである。
本研究では,ラベルのない3次元点群と画像から直接,ロボットのインタラクションのダイナミクスをモデル化するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-02T11:04:49Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) はインタラクティブなマルチモーダル物理シミュレーションのためのプラットフォームである。
TDWは、リッチな3D環境において、高忠実な感覚データのシミュレーションと、移動体エージェントとオブジェクト間の物理的相互作用を可能にする。
我々は、コンピュータビジョン、機械学習、認知科学における新たな研究方向において、TDWによって実現された初期実験を提示する。
論文 参考訳(メタデータ) (2020-07-09T17:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。