論文の概要: Force-Aware Interface via Electromyography for Natural VR/AR Interaction
- arxiv url: http://arxiv.org/abs/2210.01225v1
- Date: Mon, 3 Oct 2022 20:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 15:43:28.066935
- Title: Force-Aware Interface via Electromyography for Natural VR/AR Interaction
- Title(参考訳): 筋電図を用いた自然なVR/ARインタラクションのための力覚インタフェース
- Authors: Yunxiang Zhang, Benjamin Liang, Boyuan Chen, Paul Torrens, S. Farokh
Atashzar, Dahua Lin, Qi Sun
- Abstract要約: 我々はVR/ARにおける自然的および直感的な力入力のための学習ベースのニューラルネットワークを設計する。
我々は,3.3%の平均誤差で指の力量をリアルタイムでデコードし,キャリブレーションの少ない新規ユーザに一般化できることを実証した。
今後のVR/ARにおける、より現実的な物理性に向けた研究を進めるために、我々の研究成果を期待する。
- 参考スコア(独自算出の注目度): 69.1332992637271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While tremendous advances in visual and auditory realism have been made for
virtual and augmented reality (VR/AR), introducing a plausible sense of
physicality into the virtual world remains challenging. Closing the gap between
real-world physicality and immersive virtual experience requires a closed
interaction loop: applying user-exerted physical forces to the virtual
environment and generating haptic sensations back to the users. However,
existing VR/AR solutions either completely ignore the force inputs from the
users or rely on obtrusive sensing devices that compromise user experience.
By identifying users' muscle activation patterns while engaging in VR/AR, we
design a learning-based neural interface for natural and intuitive force
inputs. Specifically, we show that lightweight electromyography sensors,
resting non-invasively on users' forearm skin, inform and establish a robust
understanding of their complex hand activities. Fuelled by a
neural-network-based model, our interface can decode finger-wise forces in
real-time with 3.3% mean error, and generalize to new users with little
calibration. Through an interactive psychophysical study, we show that human
perception of virtual objects' physical properties, such as stiffness, can be
significantly enhanced by our interface. We further demonstrate that our
interface enables ubiquitous control via finger tapping. Ultimately, we
envision our findings to push forward research towards more realistic
physicality in future VR/AR.
- Abstract(参考訳): バーチャルリアリティー(VR/AR)では視覚的および聴覚的リアリズムが大幅に進歩しているが、仮想世界への物理的な感覚の導入は依然として困難である。
現実世界の物理的体験と没入的な仮想体験のギャップを埋めるには、仮想環境にユーザによる物理的な力を適用し、ユーザに触覚を戻すという、クローズドなインタラクションループが必要だ。
しかし、既存のVR/ARソリューションは、ユーザーからの強制入力を完全に無視するか、ユーザー体験を損なう邪魔なセンサーデバイスに依存している。
ユーザの筋活動パターンをVR/ARで識別することで,自然および直感的な力入力のための学習ベースのニューラルネットワークを設計する。
具体的には,ユーザの前腕皮膚に非侵襲的に作用する軽量な筋電図センサが,複雑な手の動きをしっかりと把握していることを示す。
ニューラルネットワークに基づくモデルにより,3.3%の平均誤差で指力のリアルタイムデコードを行い,キャリブレーションをほとんど行わずに新たなユーザに一般化する。
対話型心理物理学研究により,仮想物体の物理的性質(剛性など)に対する人間の知覚は,インタフェースによって著しく向上することが示された。
さらに,指タッピングによるユビキタス制御が可能であることを示す。
最終的には、将来のVR/ARにおけるより現実的な物理性に向けた研究を進めるために、私たちの研究成果を期待する。
関連論文リスト
- Haptic Repurposing with GenAI [5.424247121310253]
Mixed Realityは、デジタル世界と物理的な世界を融合して、没入型人間とコンピュータのインタラクションを作ることを目指している。
本稿では,Haptic Repurposing with GenAIを紹介し,任意の物理オブジェクトをAI生成仮想アセットの適応型触覚インターフェースに変換することによってMRインタラクションを強化する革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-06-11T13:06:28Z) - Tremor Reduction for Accessible Ray Based Interaction in VR Applications [0.0]
多くの従来の2Dインタフェースのインタラクション方法は、入力機構にほとんど変更を加えることなく、VR空間で直接動作するように変換されている。
本稿では,低域通過フィルタを用いてユーザ入力ノイズの正規化を行い,光線による相互作用におけるモータの細かな要求を緩和する手法を提案する。
論文 参考訳(メタデータ) (2024-05-12T17:07:16Z) - Thelxinoë: Recognizing Human Emotions Using Pupillometry and Machine Learning [0.0]
本研究は,現実的かつ感情的に共鳴するタッチインタラクションのための複数のセンサデータを統合することで,VR体験の向上を目的とした,Thelxino"eフレームワークに大きく貢献する。
我々の発見は、没入的でインタラクティブなVR環境を開発するための新しい道を開き、バーチャルタッチ技術の将来の進歩への道を開いた。
論文 参考訳(メタデータ) (2024-03-27T21:14:17Z) - VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality [39.53150683721031]
提案するVR-GSシステムは,人間中心の3Dコンテンツインタラクションにおける飛躍的な進歩を示す。
私たちの仮想現実システムのコンポーネントは、高い効率と有効性のために設計されています。
論文 参考訳(メタデータ) (2024-01-30T01:28:36Z) - Neural feels with neural fields: Visuo-tactile perception for in-hand
manipulation [57.60490773016364]
マルチフィンガーハンドの視覚と触覚を組み合わせることで,手動操作時の物体の姿勢と形状を推定する。
提案手法であるNeuralFeelsは,ニューラルネットワークをオンラインで学習することでオブジェクトの形状を符号化し,ポーズグラフ問題を最適化して共同で追跡する。
私たちの結果は、タッチが少なくとも、洗練され、そして最も最良のものは、手動操作中に視覚的推定を曖昧にすることを示しています。
論文 参考訳(メタデータ) (2023-12-20T22:36:37Z) - Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps [100.72245315180433]
本研究では,人間の手-物体相互作用の異なるモードを捉えるために,再構成可能なデータグローブの設計を提案する。
グローブは3つのモードで動作し、異なる特徴を持つ様々な下流タスクを実行する。
i)手の動きと関連力を記録し,(ii)VRの操作流速を改善するとともに,(iii)様々なツールの現実的なシミュレーション効果を生み出すことにより,システムの3つのモードを評価する。
論文 参考訳(メタデータ) (2023-01-14T05:35:50Z) - Cross-Reality Re-Rendering: Manipulating between Digital and Physical
Realities [2.538209532048867]
本研究では,ユーザの身体的現実とデジタル現実の両方の知覚を操作できるシステムの設計について検討する。
ユーザは、両方の現実からビュー履歴を検査し、リアルタイムに相互運用可能な介入を生成することができる。
論文 参考訳(メタデータ) (2022-11-15T09:31:52Z) - The Gesture Authoring Space: Authoring Customised Hand Gestures for
Grasping Virtual Objects in Immersive Virtual Environments [81.5101473684021]
本研究は、仮想オブジェクトを現実世界のようにつかむことができる、オブジェクト固有のグリップジェスチャーのためのハンドジェスチャーオーサリングツールを提案する。
提示されたソリューションは、ジェスチャー認識にテンプレートマッチングを使用し、カスタムのカスタマイズされた手の動きを設計および作成するために技術的な知識を必要としない。
本研究は,提案手法を用いて作成したジェスチャーが,ユーザによって他のユーザよりも自然な入力モダリティとして認識されていることを示した。
論文 参考訳(メタデータ) (2022-07-03T18:33:33Z) - Robust Egocentric Photo-realistic Facial Expression Transfer for Virtual
Reality [68.18446501943585]
ソーシャルな存在は、バーチャルリアリティー(VR)におけるデジタル人間による次世代コミュニケーションシステムを支える
最高の3DビデオリアルVRアバターは、人固有の(PS)モデルに依存します。
本稿では,エンドツーエンドのマルチアイデンティティアーキテクチャを提案することで,これらの制限を克服する。
論文 参考訳(メタデータ) (2021-04-10T15:48:53Z) - Physics-Based Dexterous Manipulations with Estimated Hand Poses and
Residual Reinforcement Learning [52.37106940303246]
ノイズの多い入力ポーズをターゲットの仮想ポーズにマッピングするモデルを学習する。
モデルフリーハイブリッドRL+ILアプローチを用いて残留条件下で訓練する。
筆者らは,VRにおける手動物体の相互作用と,それを用いた手動物体の動作再構成という,手動姿勢推定を用いた2つのアプリケーションで,我々のフレームワークを検証した。
論文 参考訳(メタデータ) (2020-08-07T17:34:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。