論文の概要: Marginalization Consistent Mixture of Separable Flows for Probabilistic Irregular Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2406.07246v1
- Date: Tue, 11 Jun 2024 13:28:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 15:54:07.309243
- Title: Marginalization Consistent Mixture of Separable Flows for Probabilistic Irregular Time Series Forecasting
- Title(参考訳): 確率的不規則時系列予測のための分離性流れの連成整合性混合
- Authors: Vijaya Krishna Yalavarthi, Randolf Scholz, Kiran Madhusudhanan, Stefan Born, Lars Schmidt-Thieme,
- Abstract要約: 我々は,新しい確率的不規則時系列予測モデル,Marginalization Consistent Mixtures of Separable Flows (moses)を開発した。
mosesは、他の最先端のマーカライゼーション一貫性モデルより優れ、ProFITiと同等だが、ProFITiと異なり、マーカライゼーション一貫性を保証する。
- 参考スコア(独自算出の注目度): 4.714246221974192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic forecasting models for joint distributions of targets in irregular time series are a heavily under-researched area in machine learning with, to the best of our knowledge, only three models researched so far: GPR, the Gaussian Process Regression model~\citep{Durichen2015.Multitask}, TACTiS, the Transformer-Attentional Copulas for Time Series~\cite{Drouin2022.Tactis, ashok2024tactis} and ProFITi \citep{Yalavarthi2024.Probabilistica}, a multivariate normalizing flow model based on invertible attention layers. While ProFITi, thanks to using multivariate normalizing flows, is the more expressive model with better predictive performance, we will show that it suffers from marginalization inconsistency: it does not guarantee that the marginal distributions of a subset of variables in its predictive distributions coincide with the directly predicted distributions of these variables. Also, TACTiS does not provide any guarantees for marginalization consistency. We develop a novel probabilistic irregular time series forecasting model, Marginalization Consistent Mixtures of Separable Flows (moses), that mixes several normalizing flows with (i) Gaussian Processes with full covariance matrix as source distributions and (ii) a separable invertible transformation, aiming to combine the expressivity of normalizing flows with the marginalization consistency of Gaussians. In experiments on four different datasets we show that moses outperforms other state-of-the-art marginalization consistent models, performs on par with ProFITi, but different from ProFITi, guarantee marginalization consistency.
- Abstract(参考訳): GPR, ガウス過程回帰モデル~\citep{Durichen2015.Multitask}, TACTiS, Transformer-Attentional Copulas for Time Series~\cite{Drouin2022.Tactis, ashok2024tactis}, ProFITi \citep{Yalavarthi2024.Probabilistica}, 非可逆注意層に基づく多変量正規化フローモデル。
ProFITiは、多変量正規化フローを用いることにより、より表現力のある予測性能を持つモデルであるが、このモデルが限界化の不整合に悩まされていることを示す。
また、TACTiSは限界化一貫性の保証を提供していない。
我々は,複数の正規化流を混合した新しい確率的不規則時系列予測モデルであるMarginalization Consistent Mixtures of Separable Flow(moses)を開発した。
一 ソース分布として完全共分散行列をもつガウス過程
(2) 正規化フローの表現性とガウスの辺化整合性を組み合わせることを目的とした分離可逆変換。
4つの異なるデータセットの実験では、モーゼが他の最先端のマージン化一貫性モデルより優れており、ProFITiと同等だが、ProFITiと異なり、マージン化一貫性が保証されている。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Discrete Flow Matching [74.04153927689313]
本稿では,離散データ生成に特化して設計された新しい離散フローパラダイムを提案する。
我々のアプローチは、非自己回帰的な方法で高品質な離散データを生成することができる。
論文 参考訳(メタデータ) (2024-07-22T12:33:27Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
時間変化誤差過程に対するゼロ平均ガウス分布の動的混合を提案する。
提案手法は,学習すべきパラメータを数つ追加するだけで,既存のディープラーニングフレームワークにシームレスに統合することができる。
提案手法を交通速度予測タスク上で評価し,提案手法がモデル水平線を改良するだけでなく,解釈可能な時間相関構造も提供することを発見した。
論文 参考訳(メタデータ) (2022-12-10T22:50:00Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z) - Stochastic Normalizing Flows [2.323220706791067]
単純な事前分布の変換を学習するために,フローの正規化が有効であることを示す。
サンプルとフローパラメータの両方をエンドツーエンドに最適化できる効率的なトレーニング手順を導出する。
いくつかのベンチマークでSNFの表現力,サンプリング効率,正当性について述べる。
論文 参考訳(メタデータ) (2020-02-16T23:29:32Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。