論文の概要: Marginalization Consistent Probabilistic Forecasting of Irregular Time Series via Mixture of Separable flows
- arxiv url: http://arxiv.org/abs/2406.07246v2
- Date: Sun, 11 May 2025 15:30:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.595016
- Title: Marginalization Consistent Probabilistic Forecasting of Irregular Time Series via Mixture of Separable flows
- Title(参考訳): 分離流の混合による不規則時系列の連成確率予測
- Authors: Vijaya Krishna Yalavarthi, Randolf Scholz, Christian Kloetergens, Kiran Madhusudhanan, Stefan Born, Lars Schmidt-Thieme,
- Abstract要約: 不規則な時系列における目標の連立分布の確率論的予測モデルは、機械学習においてあまり研究されていない分野である。
MOSES(Marginalization Consistent Mixture of Separable Flows)は,複数の潜伏ガウス過程と分離可能なユニ-正規性フローの混合をパラメタライズするモデルである。
4つのデータセットの実験では、MOSESは正確な結合予測と限界予測の両方を達成し、他の余分化の基線を全て上回り、ProFITiをわずかに下回っただけで、余分分布の予測では圧倒的に優れていることが示されている。
- 参考スコア(独自算出の注目度): 4.489135297410294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic forecasting models for joint distributions of targets in irregular time series with missing values are a heavily under-researched area in machine learning, with, to the best of our knowledge, only two Models have been researched so far: The Gaussian Process Regression model, and ProFITi. While ProFITi, thanks to using multivariate normalizing flows, is very expressive, leading to better predictive performance, it suffers from marginalization inconsistency: It does not guarantee that the marginal distributions of a subset of variables in its predictive distributions coincide with the directly predicted distributions of these variables. When asked to directly predict marginal distributions, they are often vastly inaccurate. We propose MOSES (Marginalization Consistent Mixture of Separable Flows), a model that parametrizes a stochastic process through a mixture of several latent multivariate Gaussian Processes combined with separable univariate Normalizing Flows. In particular, MOSES can be analytically marginalized, allowing it to directly answer a wider range of probabilistic queries than most competitors. Experiments on four datasets show that MOSES achieves both accurate joint and marginal predictions, surpassing all other marginalization consistent baselines, while only trailing slightly behind ProFITi in joint prediction, but vastly superior when predicting marginal distributions.
- Abstract(参考訳): 不規則な時系列における目標の連立分布の確率論的予測モデルは、機械学習においてあまり研究されていない分野であり、我々の知る限り、これまでに研究されているのはガウス過程回帰モデルとProFITiの2つのモデルのみである。
多変量正規化フローを使うことで、ProFITiは非常に表現力が高く、予測性能が向上するが、限界化の不整合に悩まされる: 予測分布における変数のサブセットの限界分布が、これらの変数の直接予測分布と一致することを保証しない。
限界分布を直接予測するよう依頼されると、しばしば非常に不正確である。
MOSES(Marginalization Consistent Mixture of Separable Flows)は,複数の潜伏多変量ガウス過程と分離単変量正規化フローを混合して確率過程をパラメータ化するモデルである。
特に、MOSESは分析的に疎外化され、ほとんどの競合相手よりも幅広い確率的クエリに直接答えることができる。
4つのデータセットの実験では、MOSESは正確な結合予測と限界予測の両方を達成し、他の余分化の基線を全て上回り、ProFITiをわずかに下回っただけで、余分分布の予測では圧倒的に優れていることが示されている。
関連論文リスト
- Gaussian Mixture Flow Matching Models [51.976452482535954]
拡散モデルは正規分布をガウス平均として近似し,その平均を推定する一方,フローマッチングモデルはガウス平均をフロー速度としてパラメータ化する。
離散化誤差による数段階のサンプリングでは性能が低下し、分類器フリーガイダンス(CFG)では過飽和色が生じる傾向にある。
本稿では,CFGの過飽和問題を緩和し,画像生成品質を向上する新しい確率的ガイダンス手法を提案する。
論文 参考訳(メタデータ) (2025-04-07T17:59:42Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Discrete Flow Matching [74.04153927689313]
本稿では,離散データ生成に特化して設計された新しい離散フローパラダイムを提案する。
我々のアプローチは、非自己回帰的な方法で高品質な離散データを生成することができる。
論文 参考訳(メタデータ) (2024-07-22T12:33:27Z) - MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction [72.70572835589158]
本稿では,軌道予測のための正規化フローモデルに対して,混合ガウス前駆体を構築することを提案する。
提案手法は,一般的な UCY/ETH および SDD データセットにおける軌道アライメントと多様性の評価において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-02-19T15:48:55Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
時間変化誤差過程に対するゼロ平均ガウス分布の動的混合を提案する。
提案手法は,学習すべきパラメータを数つ追加するだけで,既存のディープラーニングフレームワークにシームレスに統合することができる。
提案手法を交通速度予測タスク上で評価し,提案手法がモデル水平線を改良するだけでなく,解釈可能な時間相関構造も提供することを発見した。
論文 参考訳(メタデータ) (2022-12-10T22:50:00Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z) - Stochastic Normalizing Flows [2.323220706791067]
単純な事前分布の変換を学習するために,フローの正規化が有効であることを示す。
サンプルとフローパラメータの両方をエンドツーエンドに最適化できる効率的なトレーニング手順を導出する。
いくつかのベンチマークでSNFの表現力,サンプリング効率,正当性について述べる。
論文 参考訳(メタデータ) (2020-02-16T23:29:32Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。