Effective Reinforcement Learning for Reasoning in Language Models
- URL: http://arxiv.org/abs/2505.17218v1
- Date: Thu, 22 May 2025 18:48:09 GMT
- Title: Effective Reinforcement Learning for Reasoning in Language Models
- Authors: Lianghuan Huang, Shuo Li, Sagnik Anupam, Insup Lee, Osbert Bastani,
- Abstract summary: Reinforcement learning (RL) has emerged as a promising strategy for improving the reasoning capabilities of language models (LMs) in domains such as mathematics and coding.<n>We analyze RL algorithm design decisions for LM reasoning, focusing on relatively small models due to computational constraints.<n>Our findings are: (i) on-policy RL significantly outperforms supervised fine-tuning (SFT), (ii) PPO-based off-policy updates increase accuracy instead of reduce variance, and (iii) removing KL divergence can lead to more concise generations and higher accuracy.
- Score: 30.994610715391776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has emerged as a promising strategy for improving the reasoning capabilities of language models (LMs) in domains such as mathematics and coding. However, most modern RL algorithms were designed to target robotics applications, which differ significantly from LM reasoning. We analyze RL algorithm design decisions for LM reasoning, for both accuracy and computational efficiency, focusing on relatively small models due to computational constraints. Our findings are: (i) on-policy RL significantly outperforms supervised fine-tuning (SFT), (ii) PPO-based off-policy updates increase accuracy instead of reduce variance, and (iii) removing KL divergence can lead to more concise generations and higher accuracy. Furthermore, we find that a key bottleneck to computational efficiency is that the optimal batch sizes for inference and backpropagation are different. We propose a novel algorithm, DASH, that performs preemptive sampling (i.e., sample a large batch and accumulate gradient updates in small increments), and gradient filtering (i.e., drop samples with small advantage estimates). We show that DASH reduces training time by 83% compared to a standard implementation of GRPO without sacrificing accuracy. Our findings provide valuable insights on designing effective RL algorithms for LM reasoning.
Related papers
- Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner [31.033131727230277]
Large reasoning models (LRMs) have recently shown promise in solving complex math problems when optimized with Reinforcement Learning (RL)<n>We propose a novel intrinsic signal-driven generative process evaluation mechanism operating at the thought level to address major bottlenecks in RL-based training.<n>Experiments on 1.5B and 7B parameter LRMs demonstrate that our method achieves higher problem-solving accuracy with significantly fewer training samples than outcome-only reward baselines.
arXiv Detail & Related papers (2025-07-31T07:54:58Z) - Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
We investigate the effects of prolonged reinforcement learning on a small language model across a diverse set of reasoning domains.<n>We introduce controlled KL regularization, clipping ratio, and periodic reference policy resets as critical components for unlocking long-term performance gains.<n>Our model achieves significant improvements over strong baselines, including +14.7% on math, +13.9% on coding, and +54.8% on logic puzzle tasks.
arXiv Detail & Related papers (2025-07-16T17:59:24Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - MDPO: Multi-Granularity Direct Preference Optimization for Mathematical Reasoning [0.0]
We propose the Multi-Granularity Direct Preference Optimization (MDPO) method, optimizing the mathematical reasoning of Large Language Models (LLMs)<n>We conduct experiments on the open-source models Qwen2 and Llama3, achieving improvements of 1.7% and 1.2% on the GSM8K dataset, and 2.3% and 1.2% on the MATH dataset.<n>We also provide a pipeline for constructing MDPO training data that is simple and does not require manual annotation costs.
arXiv Detail & Related papers (2025-05-30T08:42:14Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - What Matters for Batch Online Reinforcement Learning in Robotics? [65.06558240091758]
The ability to learn from large batches of autonomously collected data for policy improvement holds the promise of enabling truly scalable robot learning.<n>Previous works have applied imitation learning and filtered imitation learning methods to the batch online RL problem.<n>We analyze how these axes affect performance and scaling with the amount of autonomous data.
arXiv Detail & Related papers (2025-05-12T21:24:22Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [53.571195477043496]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)<n>RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.<n>Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - On the Emergence of Thinking in LLMs I: Searching for the Right Intuition [34.32871896067864]
We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP)<n> RLSP involves three steps: supervised fine-tuning with human or synthetic demonstrations of the reasoning process, using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and RL training with an outcome verifier to ensure correctness while preventing reward hacking.<n> Empirical studies in the math domain show that RLSP improves reasoning.
arXiv Detail & Related papers (2025-02-10T18:52:04Z) - Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization [22.67700436936984]
We introduce Direct Advantage Policy Optimization (DAPO), a novel step-level offline reinforcement learning algorithm.<n>DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy.<n>Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.
arXiv Detail & Related papers (2024-12-24T08:39:35Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Snapshot Reinforcement Learning: Leveraging Prior Trajectories for
Efficiency [6.267119107674013]
Deep reinforcement learning (DRL) algorithms require substantial samples and computational resources to achieve higher performance.
We present the Snapshot Reinforcement Learning framework, which enhances sample efficiency by simply altering environments.
We propose a simple and effective SnapshotRL baseline algorithm, S3RL, which integrates well with existing DRL algorithms.
arXiv Detail & Related papers (2024-03-01T17:05:22Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
Reinforcement learning (RL) is essentially different from supervised learning, and in practice, these learneds do not work well even in simple RL tasks.
Agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training.
We show that, although only trained in toy tasks, our learned can generalize unseen complex tasks in Brax.
arXiv Detail & Related papers (2023-02-03T00:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.