High-fidelity single-spin shuttling in silicon
- URL: http://arxiv.org/abs/2406.07267v1
- Date: Tue, 11 Jun 2024 13:51:52 GMT
- Title: High-fidelity single-spin shuttling in silicon
- Authors: Maxim De Smet, Yuta Matsumoto, Anne-Marije J. Zwerver, Larysa Tryputen, Sander L. de Snoo, Sergey V. Amitonov, Amir Sammak, Nodar Samkharadze, Önder Gül, Rick N. M. Wasserman, Maximilian Rimbach-Russ, Giordano Scappucci, Lieven M. K. Vandersypen,
- Abstract summary: We report shuttling of an electron inside an isotopically purified Si/SiGe heterostructure using electric gate potentials.
It allows us to displace an electron over an effective distance of 10 mum in under 200 ns with an average fidelity of 99%.
Results will guide future efforts to realize large-scale semiconductor quantum processors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The computational power and fault-tolerance of future large-scale quantum processors derive in large part from the connectivity between the qubits. One approach to increase connectivity is to engineer qubit-qubit interactions at a distance. Alternatively, the connectivity can be increased by physically displacing the qubits. This has been explored in trapped-ion experiments and using neutral atoms trapped with optical tweezers. For semiconductor spin qubits, several studies have investigated spin coherent shuttling of individual electrons, but high-fidelity transport over extended distances remains to be demonstrated. Here we report shuttling of an electron inside an isotopically purified Si/SiGe heterostructure using electric gate potentials. First, we form static quantum dots, and study how spin coherence decays as we repeatedly move a single electron between up to five dots. Next, we create a traveling wave potential to transport an electron in a moving quantum dot. This second method shows substantially better spin coherence than the first. It allows us to displace an electron over an effective distance of 10 {\mu}m in under 200 ns with an average fidelity of 99%. These results will guide future efforts to realize large-scale semiconductor quantum processors, making use of electron shuttling both within and between qubit arrays.
Related papers
- Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Shuttling an electron spin through a silicon quantum dot array [0.0]
Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures.
Here, we use a linear array of four tunnel-coupled quantum dots in a 28Si/SiGe heterostructure to create a short quantum link.
We estimate the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop.
arXiv Detail & Related papers (2022-09-02T09:55:38Z) - An electron-spin qubit platform assembled atom-by-atom on a surface [5.2557648054493065]
We demonstrate an atomic-scale qubit platform by showing atom-by-atom construction, coherent operations, and readout of multiple electron-spin qubits on a surface.
Our work marks the creation of an Angstrom-scale qubit platform, where quantum functionalities using electron spin arrays, built atom-by-atom on a surface, are now within reach.
arXiv Detail & Related papers (2021-08-23T01:04:24Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Single electrons on solid neon as a solid-state qubit platform [10.980660117562438]
Novel qubit platforms embody long coherence, fast operation, and large scalability.
electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
arXiv Detail & Related papers (2021-06-18T19:35:16Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Long-Distance Superexchange between Semiconductor Quantum-Dot Electron
Spins [0.0]
We show evidence for long-distance spin-chain-mediated superexchange between electron spin qubits in semiconductor quantum dots.
Superexchange is a promising technique to create long-distance coupling between quantum-dot spin qubits.
arXiv Detail & Related papers (2020-09-13T19:50:59Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Spin shuttling in a silicon double quantum dot [0.0]
We study a minimal version of spin shuttling between two quantum dots.
Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling.
We find that a spin infidelity as low as $1-F_slesssim 0.002$ with a relatively fast level velocity of $alpha = 600, mu$eV/ns is feasible.
arXiv Detail & Related papers (2020-07-07T16:33:06Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.