Multi-objective Reinforcement learning from AI Feedback
- URL: http://arxiv.org/abs/2406.07295v2
- Date: Wed, 12 Jun 2024 13:55:30 GMT
- Title: Multi-objective Reinforcement learning from AI Feedback
- Authors: Marcus Williams,
- Abstract summary: This paper presents a novel approach to improve the alignment and performance of language models trained using reinforcement learning from AI feedback (RLAIF)
In contrast to standard approaches that train a single preference model to represent all human preferences, MORLAIF decomposes this task into simpler principles, such as toxicity, factuality, and sycophancy.
Our experiments indicate that MORLAIF outperforms the standard RLAIF baselines and that MORLAIF can be used to align larger language models using smaller ones.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents Multi-Objective Reinforcement Learning from AI Feedback (MORLAIF), a novel approach to improving the alignment and performance of language models trained using reinforcement learning from AI feedback (RLAIF). In contrast to standard approaches that train a single preference model to represent all human preferences, MORLAIF decomposes this task into multiple simpler principles, such as toxicity, factuality, and sycophancy. Separate preference models are trained for each principle using feedback from GPT-3.5-Turbo. These preference model scores are then combined using different scalarization functions to provide a reward signal for Proximal Policy Optimization (PPO) training of the target language model. Our experiments indicate that MORLAIF outperforms the standard RLAIF baselines and that MORLAIF can be used to align larger language models using smaller ones. Surprisingly, the choice of scalarization function does not appear to significantly impact the results.
Related papers
- Joint Training for Selective Prediction [5.662924503089369]
Selective Prediction methods determine when to adopt a classifier's output versus defer to a human.
One previous method involves learning a deferral model based on engineered features.
We introduce a novel joint-training approach that simultaneously optimize learned representations used by the classifier module and a learned deferral policy.
arXiv Detail & Related papers (2024-10-31T15:28:26Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning [12.742158403867002]
Reinforcement Learning from Human Feedback is a powerful paradigm for aligning foundation models to human values and preferences.
Current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population.
We develop a class of multimodal RLHF methods to address the need for pluralistic alignment.
arXiv Detail & Related papers (2024-08-19T15:18:30Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Beyond One-Preference-Fits-All Alignment: Multi-Objective Direct Preference Optimization [76.09576643028362]
We present Multi-Objective Direct Preference Optimization (MODPO) for multiple alignment objectives.
MODPO folds language modeling directly into reward modeling, training language models as implicit collective reward models.
It theoretically yields the same optimal solutions as MORLHF but is practically more stable and efficient.
arXiv Detail & Related papers (2023-10-05T17:35:26Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.