Joint Training for Selective Prediction
- URL: http://arxiv.org/abs/2410.24029v1
- Date: Thu, 31 Oct 2024 15:28:26 GMT
- Title: Joint Training for Selective Prediction
- Authors: Zhaohui Li, Rebecca J. Passonneau,
- Abstract summary: Selective Prediction methods determine when to adopt a classifier's output versus defer to a human.
One previous method involves learning a deferral model based on engineered features.
We introduce a novel joint-training approach that simultaneously optimize learned representations used by the classifier module and a learned deferral policy.
- Score: 5.662924503089369
- License:
- Abstract: Classifier models are prevalent in natural language processing (NLP), often with high accuracy. Yet in real world settings, human-in-the-loop systems can foster trust in model outputs and even higher performance. Selective Prediction (SP) methods determine when to adopt a classifier's output versus defer to a human. Previous SP approaches have addressed how to improve softmax as a measure of model confidence, or have developed separate confidence estimators. One previous method involves learning a deferral model based on engineered features. We introduce a novel joint-training approach that simultaneously optimizes learned representations used by the classifier module and a learned deferral policy. Our results on four classification tasks demonstrate that joint training not only leads to better SP outcomes over two strong baselines, but also improves the performance of both modules.
Related papers
- Multi-objective Reinforcement learning from AI Feedback [0.0]
This paper presents a novel approach to improve the alignment and performance of language models trained using reinforcement learning from AI feedback (RLAIF)
In contrast to standard approaches that train a single preference model to represent all human preferences, MORLAIF decomposes this task into simpler principles, such as toxicity, factuality, and sycophancy.
Our experiments indicate that MORLAIF outperforms the standard RLAIF baselines and that MORLAIF can be used to align larger language models using smaller ones.
arXiv Detail & Related papers (2024-06-11T14:24:00Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Guiding The Last Layer in Federated Learning with Pre-Trained Models [18.382057374270143]
Federated Learning (FL) is an emerging paradigm that allows a model to be trained across a number of participants without sharing data.
We show that fitting a classification head using the Nearest Class Means (NCM) can be done exactly and orders of magnitude more efficiently than existing proposals.
arXiv Detail & Related papers (2023-06-06T18:02:02Z) - Decoupled Training for Long-Tailed Classification With Stochastic
Representations [15.990318581975435]
Decoupling representation learning and learning has been shown to be effective in classification with long-tailed data.
We first apply Weight Averaging (SWA), an optimization technique for improving generalization of deep neural networks, to obtain better generalizing feature extractors for long-tailed classification.
We then propose a novel classifier re-training algorithm based on perturbed representation obtained from the SWA-Gaussian, a Gaussian SWA, and a self-distillation strategy.
arXiv Detail & Related papers (2023-04-19T05:35:09Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - BERT Loses Patience: Fast and Robust Inference with Early Exit [91.26199404912019]
We propose Patience-based Early Exit as a plug-and-play technique to improve the efficiency and robustness of a pretrained language model.
Our approach improves inference efficiency as it allows the model to make a prediction with fewer layers.
arXiv Detail & Related papers (2020-06-07T13:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.