Large Language Models for Constrained-Based Causal Discovery
- URL: http://arxiv.org/abs/2406.07378v1
- Date: Tue, 11 Jun 2024 15:45:24 GMT
- Title: Large Language Models for Constrained-Based Causal Discovery
- Authors: Kai-Hendrik Cohrs, Gherardo Varando, Emiliano Diaz, Vasileios Sitokonstantinou, Gustau Camps-Valls,
- Abstract summary: Causality is essential for understanding complex systems, such as the economy, the brain, and the climate.
This work explores the capabilities of Large Language Models (LLMs) as an alternative to domain experts for causal graph generation.
- Score: 4.858756226945995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causality is essential for understanding complex systems, such as the economy, the brain, and the climate. Constructing causal graphs often relies on either data-driven or expert-driven approaches, both fraught with challenges. The former methods, like the celebrated PC algorithm, face issues with data requirements and assumptions of causal sufficiency, while the latter demand substantial time and domain knowledge. This work explores the capabilities of Large Language Models (LLMs) as an alternative to domain experts for causal graph generation. We frame conditional independence queries as prompts to LLMs and employ the PC algorithm with the answers. The performance of the LLM-based conditional independence oracle on systems with known causal graphs shows a high degree of variability. We improve the performance through a proposed statistical-inspired voting schema that allows some control over false-positive and false-negative rates. Inspecting the chain-of-thought argumentation, we find causal reasoning to justify its answer to a probabilistic query. We show evidence that knowledge-based CIT could eventually become a complementary tool for data-driven causal discovery.
Related papers
- Counterfactual Causal Inference in Natural Language with Large Language Models [9.153187514369849]
We propose an end-to-end causal structure discovery and causal inference method from natural language.
We first use an LLM to extract the instantiated causal variables from text data and build a causal graph.
We then conduct counterfactual inference on the estimated graph.
arXiv Detail & Related papers (2024-10-08T21:53:07Z) - Argumentative Causal Discovery [13.853426822028975]
Causal discovery amounts to unearthing causal relationships amongst features in data.
We deploy assumption-based argumentation (ABA) to learn graphs which reflect causal dependencies in the data.
We prove that our method exhibits desirable properties, notably that, under natural conditions, it can retrieve ground-truth causal graphs.
arXiv Detail & Related papers (2024-05-18T10:34:34Z) - ALCM: Autonomous LLM-Augmented Causal Discovery Framework [2.1470800327528843]
We introduce a new framework, named Autonomous LLM-Augmented Causal Discovery Framework (ALCM), to synergize data-driven causal discovery algorithms and Large Language Models.
The ALCM consists of three integral components: causal structure learning, causal wrapper, and LLM-driven causal refiner.
We evaluate the ALCM framework by implementing two demonstrations on seven well-known datasets.
arXiv Detail & Related papers (2024-05-02T21:27:45Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - LLM4Causal: Democratized Causal Tools for Everyone via Large Language Model [7.052058110182703]
Large Language Models (LLMs) have shown their success in language understanding and reasoning on general topics.
We explore the possibility of fine-tuning an open-sourced LLM into LLM4Causal, which can identify the causal task, execute a corresponding function, and interpret its numerical results based on users' queries and the provided dataset.
arXiv Detail & Related papers (2023-12-28T16:59:06Z) - CLadder: Assessing Causal Reasoning in Language Models [82.8719238178569]
We investigate whether large language models (LLMs) can coherently reason about causality.
We propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al.
arXiv Detail & Related papers (2023-12-07T15:12:12Z) - Causal Inference Using LLM-Guided Discovery [34.040996887499425]
We show that the topological order over graph variables (causal order) alone suffices for causal effect inference.
We propose a robust technique of obtaining causal order from Large Language Models (LLMs)
Our approach significantly improves causal ordering accuracy as compared to discovery algorithms.
arXiv Detail & Related papers (2023-10-23T17:23:56Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
We test the pure causal inference skills of large language models (LLMs)
We formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables.
We show that these models achieve almost close to random performance on the task.
arXiv Detail & Related papers (2023-06-09T12:09:15Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.