論文の概要: Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization
- arxiv url: http://arxiv.org/abs/2406.07418v1
- Date: Tue, 11 Jun 2024 16:21:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 15:05:20.304492
- Title: Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization
- Title(参考訳): シングルセルゲノミクスにおける遺伝子選択の強化:プレフィラリング・シナジーと強化最適化
- Authors: Weiliang Zhang, Zhen Meng, Dongjie Wang, Min Wu, Kunpeng Liu, Yuanchun Zhou, Meng Xiao,
- Abstract要約: 単一セルゲノミクスにおけるクラスタリングタスクに適用可能な反復的遺伝子パネル選択戦略を提案する。
本手法は、他の遺伝子選択アルゴリズムの結果を統合し、重要な予備的境界を提供する。
強化学習(RL)における探索プロセスの性質と,その連続最適化能力を取り入れた。
- 参考スコア(独自算出の注目度): 16.491060073775884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in single-cell genomics necessitate precision in gene panel selection to interpret complex biological data effectively. Those methods aim to streamline the analysis of scRNA-seq data by focusing on the most informative genes that contribute significantly to the specific analysis task. Traditional selection methods, which often rely on expert domain knowledge, embedded machine learning models, or heuristic-based iterative optimization, are prone to biases and inefficiencies that may obscure critical genomic signals. Recognizing the limitations of traditional methods, we aim to transcend these constraints with a refined strategy. In this study, we introduce an iterative gene panel selection strategy that is applicable to clustering tasks in single-cell genomics. Our method uniquely integrates results from other gene selection algorithms, providing valuable preliminary boundaries or prior knowledge as initial guides in the search space to enhance the efficiency of our framework. Furthermore, we incorporate the stochastic nature of the exploration process in reinforcement learning (RL) and its capability for continuous optimization through reward-based feedback. This combination mitigates the biases inherent in the initial boundaries and harnesses RL's adaptability to refine and target gene panel selection dynamically. To illustrate the effectiveness of our method, we conducted detailed comparative experiments, case studies, and visualization analysis.
- Abstract(参考訳): 単細胞ゲノムの最近の進歩は、複雑な生物学的データを効果的に解釈するために遺伝子パネル選択の精度を必要とする。
これらの方法は、特定の解析タスクに大きく貢献する最も情報に富む遺伝子に着目して、cRNA-seqデータの解析を合理化することを目的としている。
伝統的な選択法は、しばしば専門家のドメイン知識、組み込み機械学習モデル、ヒューリスティックに基づく反復最適化に頼っているが、決定的なゲノムシグナルを曖昧にするようなバイアスや非効率性が伴う。
従来の手法の限界を認識し、洗練された戦略でこれらの制約を超越することを目指している。
本研究では,単一セルゲノミクスにおけるクラスタリングタスクに適用可能な反復的遺伝子パネル選択戦略を提案する。
提案手法は,他の遺伝子選択アルゴリズムから得られた結果を一意に統合し,検索空間の初期ガイドとして貴重な予備的境界や事前知識を提供し,フレームワークの効率を高める。
さらに、強化学習(RL)における探索過程の確率的性質と、報酬に基づくフィードバックによる継続的な最適化能力も取り入れた。
この組み合わせは、初期境界に固有のバイアスを緩和し、RLの遺伝子パネル選択を動的に洗練および標的にする適応性を活用する。
本手法の有効性を明らかにするために, 詳細な比較実験, ケーススタディ, 可視化分析を行った。
関連論文リスト
- Optimizing Feature Selection with Genetic Algorithms: A Review of Methods and Applications [4.395397502990339]
遺伝的アルゴリズム (GA) は, 局所最適化を回避し, 選択プロセス自体を改善することで, 欠点に対する対策として提案されている。
本論文では,アプリケーションにおけるGAベースの特徴選択技術とその適用性について概観する。
論文 参考訳(メタデータ) (2024-09-05T22:28:42Z) - CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments [51.41735920759667]
大規模言語モデル(LLM)は様々なタスクにおいて有望であるが、しばしば特定の知識が欠如し、生物学的設計の問題を正確に解くのに苦労する。
本研究では,CRISPRに基づく遺伝子編集実験の設計プロセスを自動化するために,ドメイン知識と外部ツールを付加したLCMエージェントであるCRISPR-GPTを紹介する。
論文 参考訳(メタデータ) (2024-04-27T22:59:17Z) - Advancing Gene Selection in Oncology: A Fusion of Deep Learning and
Sparsity for Precision Gene Selection [4.093503153499691]
本稿では,深層学習に基づく生存予測モデルのための2つの遺伝子選択手法を提案する。
第1の戦略はスパース性誘導法を使用し、第2の戦略は重要性に基づく遺伝子選択を用いて関連遺伝子を同定する。
論文 参考訳(メタデータ) (2024-03-04T10:44:57Z) - DNA Sequence Classification with Compressors [0.0]
本研究は,DNA配列解析に適した圧縮機を用いたパラメータフリー分類法を新たに導入する。
この手法は、精度の観点から現在の最先端と整合するだけでなく、従来の機械学習手法よりもリソース効率の良い代替手段を提供する。
論文 参考訳(メタデータ) (2024-01-25T09:17:19Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - A New Deep Learning and XAI-Based Algorithm for Features Selection in
Genomics [5.787117733071415]
本稿では,ゲノム規模のデータに基づいて特徴選択を行う新しいアルゴリズムを提案する。
慢性リンパ性白血病データセットへの応用の結果は、アルゴリズムの有効性を証明している。
論文 参考訳(メタデータ) (2023-03-29T16:44:13Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - Complexity-based speciation and genotype representation for
neuroevolution [81.21462458089142]
本稿では、進化するネットワークを隠されたニューロンの数に基づいて種に分類する神経進化の種分化原理を提案する。
提案された種分化原理は、種および生態系全体における多様性の促進と保存を目的として設計されたいくつかの技術で採用されている。
論文 参考訳(メタデータ) (2020-10-11T06:26:56Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。