論文の概要: Knowledge-Guided Biomarker Identification for Label-Free Single-Cell RNA-Seq Data: A Reinforcement Learning Perspective
- arxiv url: http://arxiv.org/abs/2501.04718v1
- Date: Thu, 02 Jan 2025 07:57:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-12 03:17:08.769068
- Title: Knowledge-Guided Biomarker Identification for Label-Free Single-Cell RNA-Seq Data: A Reinforcement Learning Perspective
- Title(参考訳): ラベルフリーRNA-Seqデータに対する知識誘導型バイオマーカー同定:強化学習の視点から
- Authors: Meng Xiao, Weiliang Zhang, Xiaohan Huang, Hengshu Zhu, Min Wu, Xiaoli Li, Yuanchun Zhou,
- Abstract要約: 本稿では、既存の遺伝子選択アルゴリズムからのアンサンブル知識を利用して、予備的境界や事前知識を確立する反復的な遺伝子パネル選択戦略を提案する。
我々は、専門家の行動によって形成される報酬関数を通じて強化学習を取り入れ、動的洗練と遺伝子パネルの標的選択を可能にした。
本研究は, 単細胞ゲノムデータ解析における本手法の可能性を明らかにするものである。
- 参考スコア(独自算出の注目度): 24.247247851943982
- License:
- Abstract: Gene panel selection aims to identify the most informative genomic biomarkers in label-free genomic datasets. Traditional approaches, which rely on domain expertise, embedded machine learning models, or heuristic-based iterative optimization, often introduce biases and inefficiencies, potentially obscuring critical biological signals. To address these challenges, we present an iterative gene panel selection strategy that harnesses ensemble knowledge from existing gene selection algorithms to establish preliminary boundaries or prior knowledge, which guide the initial search space. Subsequently, we incorporate reinforcement learning through a reward function shaped by expert behavior, enabling dynamic refinement and targeted selection of gene panels. This integration mitigates biases stemming from initial boundaries while capitalizing on RL's stochastic adaptability. Comprehensive comparative experiments, case studies, and downstream analyses demonstrate the effectiveness of our method, highlighting its improved precision and efficiency for label-free biomarker discovery. Our results underscore the potential of this approach to advance single-cell genomics data analysis.
- Abstract(参考訳): 遺伝子パネルの選択は、ラベルのないゲノムデータセットの中で最も有益なゲノムバイオマーカーを特定することを目的としている。
ドメインの専門知識、組み込み機械学習モデル、あるいはヒューリスティックに基づく反復最適化に依存する従来のアプローチは、しばしばバイアスや非効率性を導入し、重要な生物学的シグナルを隠蔽する可能性がある。
これらの課題に対処するために、既存の遺伝子選択アルゴリズムからのアンサンブル知識を利用して、初期探索空間を導く予備的境界や事前知識を確立する反復的遺伝子パネル選択戦略を提案する。
その後、専門家の行動によって形成される報酬関数を通じて強化学習を取り入れ、動的洗練と遺伝子パネルの標的選択を可能にした。
この積分は、RLの確率的適応性に乗じながら、初期境界から生じるバイアスを緩和する。
包括的比較実験,ケーススタディ,下流解析により,この手法の有効性が示され,ラベルフリーバイオマーカー発見の精度と効率が向上した。
本研究は, 単細胞ゲノムデータ解析における本手法の可能性を明らかにするものである。
関連論文リスト
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本研究では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデルを提案する。
このモデルは分子生物学の中心的なドグマに固執し、タンパク質のコード配列を正確に生成する。
また、特にプロモーター配列の即応的な生成を通じて、シーケンス最適化において大きな可能性を示している。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Revolutionizing Biomarker Discovery: Leveraging Generative AI for Bio-Knowledge-Embedded Continuous Space Exploration [20.419747013569268]
本稿では,2つの重要なモジュールを持つバイオマーカー識別フレームワークを提案する。
第1モジュールはマルチエージェントシステムを使用して,バイオマーカーサブセットのペアと,それに対応する予測精度をトレーニングデータとして自動収集する。
第2のモジュールは、収集したデータの知識を連続的な空間に圧縮するために、エンコーダ-評価器-デコーダ学習パラダイムを使用する。
論文 参考訳(メタデータ) (2024-09-23T23:36:30Z) - Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization [16.491060073775884]
単一セルゲノミクスにおけるクラスタリングタスクに適用可能な反復的遺伝子パネル選択戦略を提案する。
本手法は、他の遺伝子選択アルゴリズムの結果を統合し、重要な予備的境界を提供する。
強化学習(RL)における探索プロセスの性質と,その連続最適化能力を取り入れた。
論文 参考訳(メタデータ) (2024-06-11T16:21:33Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
そこで,BioDiscoveryAgentを紹介した。このエージェントは,新しい実験を設計し,その結果の理由を明らかにし,仮説空間を効率的にナビゲートし,望ましい解に到達させる。
BioDiscoveryAgentは、機械学習モデルをトレーニングすることなく、新しい実験を独自に設計することができる。
6つのデータセットで関連する遺伝的摂動を予測することで、平均21%の改善が達成されている。
論文 参考訳(メタデータ) (2024-05-27T19:57:17Z) - Advancing Gene Selection in Oncology: A Fusion of Deep Learning and
Sparsity for Precision Gene Selection [4.093503153499691]
本稿では,深層学習に基づく生存予測モデルのための2つの遺伝子選択手法を提案する。
第1の戦略はスパース性誘導法を使用し、第2の戦略は重要性に基づく遺伝子選択を用いて関連遺伝子を同定する。
論文 参考訳(メタデータ) (2024-03-04T10:44:57Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioELは、トレーニングコーパス全体から同様のインスタンスを予測のヒントとして参照する機能を備えたBioELモデルを提供する。
k$NN-BioELは、いくつかのデータセットで最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-12-15T14:04:23Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - A New Deep Learning and XAI-Based Algorithm for Features Selection in
Genomics [5.787117733071415]
本稿では,ゲノム規模のデータに基づいて特徴選択を行う新しいアルゴリズムを提案する。
慢性リンパ性白血病データセットへの応用の結果は、アルゴリズムの有効性を証明している。
論文 参考訳(メタデータ) (2023-03-29T16:44:13Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
本稿では,正規化とアンサンブルのアイデアを組み合わせた高次元二項分類問題に対する新しいアプローチを提案する。
がん,多発性硬化症,乾皮症などの共通疾患を含むいくつかの医学的データセットを用いて,バイオマーカーの予測精度と同定の点で,本手法の優れた性能を実証した。
論文 参考訳(メタデータ) (2021-02-17T05:57:26Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。