論文の概要: Boosted Conformal Prediction Intervals
- arxiv url: http://arxiv.org/abs/2406.07449v2
- Date: Sat, 09 Nov 2024 18:37:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:04:12.434469
- Title: Boosted Conformal Prediction Intervals
- Title(参考訳): 昇降等角予測間隔
- Authors: Ran Xie, Rina Foygel Barber, Emmanuel J. Candès,
- Abstract要約: 我々は、予め定義された整合性スコア関数を改善するために機械学習技術を用いる。
強化されたコンフォメーション手順は、間隔長の削減と目標条件範囲からの偏差の低減で大幅に改善される。
- 参考スコア(独自算出の注目度): 5.762286612061953
- License:
- Abstract: This paper introduces a boosted conformal procedure designed to tailor conformalized prediction intervals toward specific desired properties, such as enhanced conditional coverage or reduced interval length. We employ machine learning techniques, notably gradient boosting, to systematically improve upon a predefined conformity score function. This process is guided by carefully constructed loss functions that measure the deviation of prediction intervals from the targeted properties. The procedure operates post-training, relying solely on model predictions and without modifying the trained model (e.g., the deep network). Systematic experiments demonstrate that starting from conventional conformal methods, our boosted procedure achieves substantial improvements in reducing interval length and decreasing deviation from target conditional coverage.
- Abstract(参考訳): 本稿では,コンフォメーション化された予測区間を,条件付きカバレッジの強化や間隔長の短縮など,特定の所望の特性に合わせるために設計した強化されたコンフォメーション手順を提案する。
我々は、事前定義された整合性スコア関数を体系的に改善するために、機械学習技術(特に勾配向上)を用いる。
このプロセスは、ターゲット特性からの予測間隔のずれを測定するために、慎重に構築された損失関数によって導かれる。
この手順は後トレーニングを実行し、モデル予測のみに依存し、トレーニングされたモデル(例えば、ディープネットワーク)を変更しない。
システム実験により,従来のコンフォメーション法から,時間間隔を短縮し,目標条件の偏差を低減できることが実証された。
関連論文リスト
- Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Explain, Adapt and Retrain: How to improve the accuracy of a PPM
classifier through different explanation styles [4.6281736192809575]
最近の論文では、結果指向の予測に予測プロセスモニタリングモデルがなぜ間違った予測を提供するのかを説明するための新しいアプローチが紹介されている。
半自動的な方法でミスを犯す予測者を誘導する最も一般的な特徴を特定するために、説明を利用する方法を示す。
論文 参考訳(メタデータ) (2023-03-27T06:37:55Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Improved Online Conformal Prediction via Strongly Adaptive Online
Learning [86.4346936885507]
我々は、強い適応的後悔を最小限に抑える新しいオンライン共形予測手法を開発した。
提案手法は,すべての区間において,ほぼ最適に適応的な後悔を同時に達成できることを実証する。
実験により,本手法は実世界のタスクにおける既存の手法よりも,より優れたカバレッジと予測セットが得られることがわかった。
論文 参考訳(メタデータ) (2023-02-15T18:59:30Z) - Loss-Controlling Calibration for Predictive Models [5.51361762392299]
交換可能なデータに対する損失制御予測を行うための予測モデルの校正のための学習フレームワークを提案する。
対照的に、損失制御手法によって構築された予測器は、設定された予測器に限らない。
提案手法は,選択的回帰および高影響気象予報問題に適用する。
論文 参考訳(メタデータ) (2023-01-11T09:44:55Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
規範的応用のための予測機械学習モデルをトレーニングするための新しい手法を提案する。
このアプローチは、標準的なトレーニング検証テストスキームの検証ステップを微調整することに基づいている。
合成データを用いたいくつかの実験は、決定論的モデルと実モデルの両方において処方料コストを削減できる有望な結果を示した。
論文 参考訳(メタデータ) (2021-10-22T15:03:20Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
不確実性定量のための回帰における予測間隔の生成について検討する。
我々は一般学習理論を用いて、リプシッツ連続性とVC-サブグラフクラスを含む最適性と実現可能性のトレードオフを特徴づける。
我々は既存のベンチマークと比べてテスト性能の点で、区間生成とキャリブレーションアルゴリズムの強みを実証的に示している。
論文 参考訳(メタデータ) (2021-02-26T17:55:30Z) - Learning Randomly Perturbed Structured Predictors for Direct Loss
Minimization [18.981576950505442]
直接損失最小化は、構造化ラベル空間上の予測子を学習するための一般的なアプローチである。
構造化予測において,学習したスコア関数とランダム化雑音とのバランスが良くなることを示す。
論文 参考訳(メタデータ) (2020-07-11T08:59:11Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - BERT Loses Patience: Fast and Robust Inference with Early Exit [91.26199404912019]
本稿では,事前学習した言語モデルの効率性と堅牢性を向上させるためのプラグイン・アンド・プレイ手法として,Patience-based Early Exitを提案する。
提案手法では,モデルを少ないレイヤで予測できるため,推論効率が向上する。
論文 参考訳(メタデータ) (2020-06-07T13:38:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。