論文の概要: OphNet: A Large-Scale Video Benchmark for Ophthalmic Surgical Workflow Understanding
- arxiv url: http://arxiv.org/abs/2406.07471v2
- Date: Wed, 12 Jun 2024 09:36:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 11:09:07.054200
- Title: OphNet: A Large-Scale Video Benchmark for Ophthalmic Surgical Workflow Understanding
- Title(参考訳): OphNet:眼科手術ワークフロー理解のための大規模ビデオベンチマーク
- Authors: Ming Hu, Peng Xia, Lin Wang, Siyuan Yan, Feilong Tang, Zhongxing Xu, Yimin Luo, Kaimin Song, Jurgen Leitner, Xuelian Cheng, Jun Cheng, Chi Liu, Kaijing Zhou, Zongyuan Ge,
- Abstract要約: 我々は,眼科手術ワークフロー理解のための大規模,専門家によるビデオベンチマークであるOphNetを紹介した。
66種類の白内障、緑内障、角膜手術にまたがる2,278本の手術ビデオの多彩なコレクションがあり、102回の手術フェーズと150回の手術の詳細な注記がある。
OphNetは、時間的ローカライズされたアノテーションを提供し、外科的シナリオ内の時間的ローカライゼーションと予測タスクを容易にする。
- 参考スコア(独自算出の注目度): 26.962250661485967
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Surgical scene perception via videos are critical for advancing robotic surgery, telesurgery, and AI-assisted surgery, particularly in ophthalmology. However, the scarcity of diverse and richly annotated video datasets has hindered the development of intelligent systems for surgical workflow analysis. Existing datasets for surgical workflow analysis, which typically face challenges such as small scale, a lack of diversity in surgery and phase categories, and the absence of time-localized annotations, limit the requirements for action understanding and model generalization validation in complex and diverse real-world surgical scenarios. To address this gap, we introduce OphNet, a large-scale, expert-annotated video benchmark for ophthalmic surgical workflow understanding. OphNet features: 1) A diverse collection of 2,278 surgical videos spanning 66 types of cataract, glaucoma, and corneal surgeries, with detailed annotations for 102 unique surgical phases and 150 granular operations; 2) It offers sequential and hierarchical annotations for each surgery, phase, and operation, enabling comprehensive understanding and improved interpretability; 3) Moreover, OphNet provides time-localized annotations, facilitating temporal localization and prediction tasks within surgical workflows. With approximately 205 hours of surgical videos, OphNet is about 20 times larger than the largest existing surgical workflow analysis benchmark. Our dataset and code have been made available at: \url{https://github.com/minghu0830/OphNet-benchmark}.
- Abstract(参考訳): ビデオによる手術シーンの認識は、ロボット手術、遠隔手術、AI支援手術、特に眼科において重要である。
しかし、多種多様な注釈付きビデオデータセットの不足は、外科的ワークフロー分析のためのインテリジェントシステムの開発を妨げている。
手術ワークフロー分析のための既存のデータセットは、通常、小さなスケール、手術やフェーズカテゴリーの多様性の欠如、時間的局所的なアノテーションの欠如といった課題に直面し、複雑で多様な実世界の手術シナリオにおける行動理解とモデル一般化の検証の要件を制限している。
このギャップに対処するため,眼科手術ワークフロー理解のための大規模,専門家によるビデオベンチマークであるOphNetを紹介した。
OphNetの機能:
1)白内障,緑内障,角膜手術を対象とする2,278本の多彩な手術ビデオ集。
2) 手術,フェーズ,手術ごとに連続的かつ階層的なアノテーションを提供し,包括的理解と解釈性の向上を可能にする。
3)OphNetは時間的局所化アノテーションを提供し,外科的ワークフロー内での時間的局所化と予測作業を容易にする。
OphNetの手術用ビデオは約205時間で、既存の最大の外科用ワークフロー分析ベンチマークの約20倍の大きさだ。
我々のデータセットとコードは、以下の通り利用可能になった。
関連論文リスト
- CholecTrack20: A Dataset for Multi-Class Multiple Tool Tracking in
Laparoscopic Surgery [1.8076340162131013]
CholecTrack20は,3つの視点にわたるマルチクラスマルチツールトラッキングのための,綿密な注釈付きデータセットである。
データセットは、20の腹腔鏡ビデオと35,000のフレーム、65,000のアノテーション付きツールインスタンスで構成されている。
論文 参考訳(メタデータ) (2023-12-12T15:18:15Z) - Cataract-1K: Cataract Surgery Dataset for Scene Segmentation, Phase
Recognition, and Irregularity Detection [5.47960852753243]
本稿では,コンピュータ化された手術ワークフロー解析を構築するための多様な要件に対処する,白内障手術用ビデオデータセットについて紹介する。
我々は、最先端のニューラルネットワークアーキテクチャの性能をベンチマークすることで、アノテーションの品質を検証する。
データセットとアノテーションは、論文の受理時に公開される。
論文 参考訳(メタデータ) (2023-12-11T10:53:05Z) - Surgical Temporal Action-aware Network with Sequence Regularization for
Phase Recognition [28.52533700429284]
本稿では,STAR-Netと命名されたシークエンス正規化を施した手術時行動認識ネットワークを提案する。
MS-STAモジュールは、視覚的特徴と2Dネットワークを犠牲にして、手術行動の空間的および時間的知識を統合する。
我々のSTAR-Net with MS-STA and DSR can exploit of visual features of surgery action with effective regularization, which to the excellent performance of surgery phase recognition。
論文 参考訳(メタデータ) (2023-11-21T13:43:16Z) - Dynamic Scene Graph Representation for Surgical Video [37.22552586793163]
我々は、シーングラフを、より包括的で意味があり、人間の読みやすい方法で、手術ビデオを表現するために活用する。
CaDISとCATARACTSのセマンティックセグメンテーションからシーングラフデータセットを作成する。
モデル決定の妥当性と堅牢性について,手術シーングラフの利点を実証する。
論文 参考訳(メタデータ) (2023-09-25T21:28:14Z) - Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures [51.78027546947034]
外科的コンピュータビジョンの最近の進歩は、言語意味論に欠ける視覚のみのモデルによって推進されている。
本稿では,eラーニングプラットフォームからの手術ビデオ講義を活用し,効果的な視覚情報と言語監督信号を提供する。
テキスト書き起こしのための複数自動音声認識システムを用いて,手術固有の言語課題に対処する。
論文 参考訳(メタデータ) (2023-07-27T22:38:12Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
本稿では,シーケンスレベルのパッチから時間的特徴を直接学習するための視覚変換器に基づくアプローチを提案する。
本研究では,白内障手術用ビデオデータセットである白内障-101とD99に対するアプローチを広範に評価し,各種の最先端手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-07-20T17:57:04Z) - LoViT: Long Video Transformer for Surgical Phase Recognition [59.06812739441785]
短時間・長期の時間情報を融合する2段階のLong Video Transformer(LoViT)を提案する。
このアプローチは、Colec80とAutoLaparoデータセットの最先端メソッドを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-15T20:06:14Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
SurgLoc 2022 チャレンジの結果を示す。
目標は、ツール検出のためにトレーニングされた機械学習モデルにおいて、ツールの存在データを弱いラベルとして活用することだった。
これらの結果を機械学習と手術データ科学の幅広い文脈で論じることで結論付ける。
論文 参考訳(メタデータ) (2023-05-11T21:44:39Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
腹腔鏡下手術における三肢の認識のためにMICCAI 2021で実施した内視鏡的視力障害であるColecTriplet 2021を提案する。
課題の参加者が提案する最先端の深層学習手法の課題設定と評価について述べる。
4つのベースライン法と19の新しいディープラーニングアルゴリズムが提示され、手術ビデオから直接手術行動三重項を認識し、平均平均精度(mAP)は4.2%から38.1%である。
論文 参考訳(メタデータ) (2022-04-10T18:51:55Z) - A real-time spatiotemporal AI model analyzes skill in open surgical
videos [2.4907439112059278]
これまでで最大のオープンな手術用ビデオデータセットであるYouTubeから、50か国からアップロードされた23の手術用プロシージャから1997年の動画を収集することで、AIモデルをトレーニングするための既存のデータ制限を克服しました。
我々は,手術行動,手,道具のリアルタイム理解が可能なマルチタスクAIモデルを開発した。
論文 参考訳(メタデータ) (2021-12-14T08:11:02Z) - LRTD: Long-Range Temporal Dependency based Active Learning for Surgical
Workflow Recognition [67.86810761677403]
本稿では,費用対効果の高い手術ビデオ解析のための新しい能動的学習法を提案する。
具体的には,非局所的再帰的畳み込みネットワーク (NL-RCNet) を提案する。
手術ワークフロー認識タスクを実行することで,大規模な手術ビデオデータセット(Cholec80)に対するアプローチを検証する。
論文 参考訳(メタデータ) (2020-04-21T09:21:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。