Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior
- URL: http://arxiv.org/abs/2406.07475v1
- Date: Tue, 11 Jun 2024 17:21:15 GMT
- Title: Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior
- Authors: Anming Gu, Edward Chien, Kristjan Greenewald,
- Abstract summary: Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its temporal marginals.
We introduce PO-MFL to solve this latent trajectory inference problem.
We leverage the MFL framework of arXiv:2205.07146, yielding an algorithm based on entropic OT between dynamics-adjusted adjacent time marginals.
- Score: 2.7255073299359154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its (uncoupled) temporal marginals, i.e. where observed particles are not tracked over time. Lavenant et al. arXiv:2102.09204 addressed this challenging problem under a stochastic differential equation (SDE) model with a gradient-driven drift in the observed space, introducing a minimum entropy estimator relative to the Wiener measure. Chizat et al. arXiv:2205.07146 then provided a practical grid-free mean-field Langevin (MFL) algorithm using Schr\"odinger bridges. Motivated by the overwhelming success of observable state space models in the traditional paired trajectory inference problem (e.g. target tracking), we extend the above framework to a class of latent SDEs in the form of observable state space models. In this setting, we use partial observations to infer trajectories in the latent space under a specified dynamics model (e.g. the constant velocity/acceleration models from target tracking). We introduce PO-MFL to solve this latent trajectory inference problem and provide theoretical guarantees by extending the results of arXiv:2102.09204 to the partially observed setting. We leverage the MFL framework of arXiv:2205.07146, yielding an algorithm based on entropic OT between dynamics-adjusted adjacent time marginals. Experiments validate the robustness of our method and the exponential convergence of the MFL dynamics, and demonstrate significant outperformance over the latent-free method of arXiv:2205.07146 in key scenarios.
Related papers
- Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models [1.7810134788247751]
We present a method for reconstructing missing spatial and velocity data along the trajectories of small objects passively advected by turbulent flows.
Our approach makes use of conditional generative diffusion models, a recently proposed data-driven machine learning technique.
arXiv Detail & Related papers (2024-10-31T14:26:10Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
We introduce a grid-independent model learning partial differential equations (PDEs) from noisy and partial observations on irregular grids.
We propose a space-time continuous latent neural PDE model with an efficient probabilistic framework and a novel design encoder for improved data efficiency and grid independence.
arXiv Detail & Related papers (2023-07-09T06:53:59Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Trajectory Inference via Mean-field Langevin in Path Space [0.17205106391379024]
Trajectory inference aims at recovering the dynamics of a population from snapshots of its temporal marginals.
A min-entropy estimator relative to the Wiener measure in path space was introduced by Lavenant et al.
arXiv Detail & Related papers (2022-05-14T23:13:00Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - Bayesian Learning via Neural Schr\"odinger-F\"ollmer Flows [3.07869141026886]
We advocate control as a finite time alternative to popular steady-state methods such as gradient Langevin dynamics (SGLD)
We discuss and adapt the existing theoretical guarantees of this framework and establish connections to already existing VI routines in SDE-based models.
arXiv Detail & Related papers (2021-11-20T03:51:18Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
We study the limiting dynamics of deep neural networks trained with gradient descent (SGD)
We show that the key ingredient driving these dynamics is not the original training loss, but rather the combination of a modified loss, which implicitly regularizes the velocity and probability currents, which cause oscillations in phase space.
arXiv Detail & Related papers (2021-07-19T20:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.