Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior
- URL: http://arxiv.org/abs/2406.07475v1
- Date: Tue, 11 Jun 2024 17:21:15 GMT
- Title: Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior
- Authors: Anming Gu, Edward Chien, Kristjan Greenewald,
- Abstract summary: Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its temporal marginals.
We introduce PO-MFL to solve this latent trajectory inference problem.
We leverage the MFL framework of arXiv:2205.07146, yielding an algorithm based on entropic OT between dynamics-adjusted adjacent time marginals.
- Score: 2.7255073299359154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its (uncoupled) temporal marginals, i.e. where observed particles are not tracked over time. Lavenant et al. arXiv:2102.09204 addressed this challenging problem under a stochastic differential equation (SDE) model with a gradient-driven drift in the observed space, introducing a minimum entropy estimator relative to the Wiener measure. Chizat et al. arXiv:2205.07146 then provided a practical grid-free mean-field Langevin (MFL) algorithm using Schr\"odinger bridges. Motivated by the overwhelming success of observable state space models in the traditional paired trajectory inference problem (e.g. target tracking), we extend the above framework to a class of latent SDEs in the form of observable state space models. In this setting, we use partial observations to infer trajectories in the latent space under a specified dynamics model (e.g. the constant velocity/acceleration models from target tracking). We introduce PO-MFL to solve this latent trajectory inference problem and provide theoretical guarantees by extending the results of arXiv:2102.09204 to the partially observed setting. We leverage the MFL framework of arXiv:2205.07146, yielding an algorithm based on entropic OT between dynamics-adjusted adjacent time marginals. Experiments validate the robustness of our method and the exponential convergence of the MFL dynamics, and demonstrate significant outperformance over the latent-free method of arXiv:2205.07146 in key scenarios.
Related papers
- TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes [63.95928298690001]
We present TPP-Gaze, a novel and principled approach to model scanpath dynamics based on Neural Temporal Point Process (TPP)
Our results show the overall superior performance of the proposed model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-30T19:22:38Z) - Accelerated Convergence of Stochastic Heavy Ball Method under Anisotropic Gradient Noise [16.12834917344859]
It is widely conjectured that heavy-ball momentum method can provide accelerated convergence and should work well in large batch settings.
We show that heavy-ball momentum can provide $tildemathcalO(sqrtkappa)$ accelerated convergence of the bias term of SGD while still achieving near-optimal convergence rate.
This means SGD with heavy-ball momentum is useful in the large-batch settings such as distributed machine learning or federated learning.
arXiv Detail & Related papers (2023-12-22T09:58:39Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
We extend mean-field Langevin dynamics to minimax optimization over probability distributions for the first time with symmetric and provably convergent updates.
We also study time and particle discretization regimes and prove a new uniform-in-time propagation of chaos result.
arXiv Detail & Related papers (2023-12-02T13:01:29Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Trajectory Inference via Mean-field Langevin in Path Space [0.17205106391379024]
Trajectory inference aims at recovering the dynamics of a population from snapshots of its temporal marginals.
A min-entropy estimator relative to the Wiener measure in path space was introduced by Lavenant et al.
arXiv Detail & Related papers (2022-05-14T23:13:00Z) - Bayesian Learning via Neural Schr\"odinger-F\"ollmer Flows [3.07869141026886]
We advocate control as a finite time alternative to popular steady-state methods such as gradient Langevin dynamics (SGLD)
We discuss and adapt the existing theoretical guarantees of this framework and establish connections to already existing VI routines in SDE-based models.
arXiv Detail & Related papers (2021-11-20T03:51:18Z) - Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum
under Heavy-Tailed Gradient Noise [39.9241638707715]
We show that FULD has similarities with enatural and egradient methods on their role in deep learning.
arXiv Detail & Related papers (2020-02-13T18:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.