Beyond Model Collapse: Scaling Up with Synthesized Data Requires Verification
- URL: http://arxiv.org/abs/2406.07515v2
- Date: Fri, 25 Oct 2024 03:38:41 GMT
- Title: Beyond Model Collapse: Scaling Up with Synthesized Data Requires Verification
- Authors: Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, Julia Kempe,
- Abstract summary: We investigate the use of verification on synthesized data to prevent model collapse.
We show that verifiers, even imperfect ones, can indeed be harnessed to prevent model collapse.
- Score: 11.6055501181235
- License:
- Abstract: Large Language Models (LLM) are increasingly trained on data generated by other LLM, either because generated text and images become part of the pre-training corpus, or because synthetized data is used as a replacement for expensive human-annotation. This raises concerns about \emph{model collapse}, a drop in model performance when their training sets include generated data. Considering that it is easier for both humans and machines to tell between good and bad examples than to generate high-quality samples, we investigate the use of verification on synthesized data to prevent model collapse. We provide a theoretical characterization using Gaussian mixtures, linear classifiers, and linear verifiers to derive conditions with measurable proxies to assess whether the verifier can effectively select synthesized data that leads to optimal performance. We experiment with two practical tasks -- computing matrix eigenvalues with transformers and news summarization with LLMs -- which both exhibit model collapse when trained on generated data, and show that verifiers, even imperfect ones, can indeed be harnessed to prevent model collapse and that our proposed proxy measure strongly correlates with performance.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
We study the impact of data curation on iterated retraining of generative models.
We prove that, if the data is curated according to a reward model, the expected reward of the iterative retraining procedure is maximized.
arXiv Detail & Related papers (2024-06-12T21:28:28Z) - Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data [49.73114504515852]
We show that replacing the original real data by each generation's synthetic data does indeed tend towards model collapse.
We demonstrate that accumulating the successive generations of synthetic data alongside the original real data avoids model collapse.
arXiv Detail & Related papers (2024-04-01T18:31:24Z) - Self-Correcting Self-Consuming Loops for Generative Model Training [16.59453827606427]
Machine learning models are increasingly trained on a mix of human- and machine-generated data.
Despite the successful stories of using synthetic data for representation learning, using synthetic data for generative model training creates "self-consuming loops"
Our paper aims to stabilize self-consuming generative model training by introducing an idealized correction function.
arXiv Detail & Related papers (2024-02-11T02:34:42Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - SynBench: Task-Agnostic Benchmarking of Pretrained Representations using
Synthetic Data [78.21197488065177]
Recent success in fine-tuning large models, that are pretrained on broad data at scale, on downstream tasks has led to a significant paradigm shift in deep learning.
This paper proposes a new task-agnostic framework, textitSynBench, to measure the quality of pretrained representations using synthetic data.
arXiv Detail & Related papers (2022-10-06T15:25:00Z) - Too Fine or Too Coarse? The Goldilocks Composition of Data Complexity
for Robust Left-Right Eye-Tracking Classifiers [0.0]
We train machine learning models utilizing a mixed dataset composed of both fine- and coarse-grain data.
For our purposes, finer-grain data refers to data collected using more complex methods whereas coarser-grain data refers to data collected using more simple methods.
arXiv Detail & Related papers (2022-08-24T23:18:08Z) - Conditional Synthetic Data Generation for Robust Machine Learning
Applications with Limited Pandemic Data [11.535196994689501]
We present a hybrid model consisting of a conditional generative flow and a classifier for conditional synthetic data generation.
We generate synthetic data by manipulating the local noise with fixed conditional feature representation.
We show that our method significantly outperforms existing models both on qualitative and quantitative performance.
arXiv Detail & Related papers (2021-09-14T07:30:54Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.