Neural Gaffer: Relighting Any Object via Diffusion
- URL: http://arxiv.org/abs/2406.07520v3
- Date: Tue, 12 Nov 2024 01:45:49 GMT
- Title: Neural Gaffer: Relighting Any Object via Diffusion
- Authors: Haian Jin, Yuan Li, Fujun Luan, Yuanbo Xiangli, Sai Bi, Kai Zhang, Zexiang Xu, Jin Sun, Noah Snavely,
- Abstract summary: We propose a novel end-to-end 2D relighting diffusion model, called Neural Gaffer.
Our model takes a single image of any object and can synthesize an accurate, high-quality relit image under any novel lighting condition.
We evaluate our model on both synthetic and in-the-wild Internet imagery and demonstrate its advantages in terms of generalization and accuracy.
- Score: 43.87941408722868
- License:
- Abstract: Single-image relighting is a challenging task that involves reasoning about the complex interplay between geometry, materials, and lighting. Many prior methods either support only specific categories of images, such as portraits, or require special capture conditions, like using a flashlight. Alternatively, some methods explicitly decompose a scene into intrinsic components, such as normals and BRDFs, which can be inaccurate or under-expressive. In this work, we propose a novel end-to-end 2D relighting diffusion model, called Neural Gaffer, that takes a single image of any object and can synthesize an accurate, high-quality relit image under any novel environmental lighting condition, simply by conditioning an image generator on a target environment map, without an explicit scene decomposition. Our method builds on a pre-trained diffusion model, and fine-tunes it on a synthetic relighting dataset, revealing and harnessing the inherent understanding of lighting present in the diffusion model. We evaluate our model on both synthetic and in-the-wild Internet imagery and demonstrate its advantages in terms of generalization and accuracy. Moreover, by combining with other generative methods, our model enables many downstream 2D tasks, such as text-based relighting and object insertion. Our model can also operate as a strong relighting prior for 3D tasks, such as relighting a radiance field.
Related papers
- A Diffusion Approach to Radiance Field Relighting using Multi-Illumination Synthesis [6.883971329818549]
We introduce a method to create relightable radiance fields using single-illumination data.
We first fine-tune a 2D diffusion model on a multi-illumination dataset conditioned by light direction.
We show results on synthetic and real multi-view data under single illumination.
arXiv Detail & Related papers (2024-09-13T16:07:25Z) - Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering [56.68286440268329]
correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials.
We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process.
Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes.
arXiv Detail & Related papers (2024-08-19T05:15:45Z) - IllumiNeRF: 3D Relighting Without Inverse Rendering [25.642960820693947]
We show how to relight each input image using an image diffusion model conditioned on target environment lighting and estimated object geometry.
We reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting.
We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks.
arXiv Detail & Related papers (2024-06-10T17:59:59Z) - Relightable Neural Actor with Intrinsic Decomposition and Pose Control [80.06094206522668]
We propose Relightable Neural Actor, a new video-based method for learning a pose-driven neural human model that can be relighted.
For training, our method solely requires a multi-view recording of the human under a known, but static lighting condition.
To evaluate our approach in real-world scenarios, we collect a new dataset with four identities recorded under different light conditions, indoors and outdoors.
arXiv Detail & Related papers (2023-12-18T14:30:13Z) - DiFaReli: Diffusion Face Relighting [13.000032155650835]
We present a novel approach to single-view face relighting in the wild.
Handling non-diffuse effects, such as global illumination or cast shadows, has long been a challenge in face relighting.
We achieve state-of-the-art performance on standard benchmark Multi-PIE and can photorealistically relight in-the-wild images.
arXiv Detail & Related papers (2023-04-19T08:03:20Z) - WildLight: In-the-wild Inverse Rendering with a Flashlight [77.31815397135381]
We propose a practical photometric solution for in-the-wild inverse rendering under unknown ambient lighting.
Our system recovers scene geometry and reflectance using only multi-view images captured by a smartphone.
We demonstrate by extensive experiments that our method is easy to implement, casual to set up, and consistently outperforms existing in-the-wild inverse rendering techniques.
arXiv Detail & Related papers (2023-03-24T17:59:56Z) - Learning to Relight Portrait Images via a Virtual Light Stage and
Synthetic-to-Real Adaptation [76.96499178502759]
Relighting aims to re-illuminate the person in the image as if the person appeared in an environment with the target lighting.
Recent methods rely on deep learning to achieve high-quality results.
We propose a new approach that can perform on par with the state-of-the-art (SOTA) relighting methods without requiring a light stage.
arXiv Detail & Related papers (2022-09-21T17:15:58Z) - Physically-Based Editing of Indoor Scene Lighting from a Single Image [106.60252793395104]
We present a method to edit complex indoor lighting from a single image with its predicted depth and light source segmentation masks.
We tackle this problem using two novel components: 1) a holistic scene reconstruction method that estimates scene reflectance and parametric 3D lighting, and 2) a neural rendering framework that re-renders the scene from our predictions.
arXiv Detail & Related papers (2022-05-19T06:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.