論文の概要: Investigating the Potential of Using Large Language Models for Scheduling
- arxiv url: http://arxiv.org/abs/2406.07573v1
- Date: Tue, 4 Jun 2024 08:56:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 00:04:06.878691
- Title: Investigating the Potential of Using Large Language Models for Scheduling
- Title(参考訳): 大規模言語モデルを用いたスケジューリングの可能性の検討
- Authors: Deddy Jobson, Yilin Li,
- Abstract要約: AIを利用したソフトウェアに関するACM International ConferenceがAIware Challengeを発表した。
プログラムスケジューリングにおけるLarge Language Models (LLM) の利用について検討する。
LLMは、ゼロショット設定でも、合理的に優れたカンファレンススケジュールの最初のドラフトを作成します。
- 参考スコア(独自算出の注目度): 2.794191745717151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inaugural ACM International Conference on AI-powered Software introduced the AIware Challenge, prompting researchers to explore AI-driven tools for optimizing conference programs through constrained optimization. We investigate the use of Large Language Models (LLMs) for program scheduling, focusing on zero-shot learning and integer programming to measure paper similarity. Our study reveals that LLMs, even under zero-shot settings, create reasonably good first drafts of conference schedules. When clustering papers, using only titles as LLM inputs produces results closer to human categorization than using titles and abstracts with TFIDF. The code has been made publicly available.
- Abstract(参考訳): AIを利用したソフトウェアに関する第1回ACM International ConferenceがAIware Challengeを導入し、研究者は制約付き最適化を通じて会議プログラムを最適化するためのAI駆動ツールを探求した。
本稿では,ゼロショット学習と整数プログラミングに着目して,プログラムスケジューリングにLarge Language Models (LLMs) を用いることを検討した。
我々の研究によると、LDMはゼロショット設定下であっても、会議スケジュールの最初のドラフトを合理的に作成できることが判明した。
論文をクラスタリングする場合、タイトルのみを LLM 入力として使用すると、タイトルや抽象語を TFIDF で使用するよりも、人間の分類に近い結果が得られる。
コードは公開されています。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
テキストレス音声言語モデル(SLM)のセマンティック理解を強化するためのAlign-SLMフレームワークを導入する。
提案手法は、与えられたプロンプトから複数の音声継続を生成し、意味的指標を用いて、直接選好最適化(DPO)のための選好データを生成する。
語彙および構文モデリングのためのZeroSpeech 2021ベンチマーク、意味的コヒーレンスのためのStoryClozeデータセットの音声バージョン、GPT4-oスコアや人間評価などの音声生成指標を用いて、フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-11-04T06:07:53Z) - Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
大規模言語モデル(LLM)は、様々な領域で研究の焦点となっている。
本稿では,12個のオープンソースLCMのログレベル提案における性能に及ぼす特性と学習パラダイムの影響について検討する。
論文 参考訳(メタデータ) (2024-10-11T03:52:17Z) - Evaluating Language Models for Generating and Judging Programming Feedback [4.743413681603463]
大規模言語モデル(LLM)は、幅広い領域で研究と実践を変革してきた。
我々は,オープンソースのLCMのプログラミング課題に対する高品質なフィードバック生成における効率性を評価する。
論文 参考訳(メタデータ) (2024-07-05T21:44:11Z) - P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language Models [7.037794031385439]
近年,大規模な言語モデル (LLM) の台頭により,実演サンプルを使わずに名前付きエンティティ認識 (NER) を直接実現できるようになった。
標準ICLは、LLMがタスク命令、フォーマット、入力ラベルマッピングを理解するのにのみ役立つが、NERタスク自体の特異性を無視する。
LLMでNERをよりよく実現するための新しいプロンプトフレームワークであるP-ICLを提案する。
論文 参考訳(メタデータ) (2024-05-08T11:01:21Z) - Unveiling the Potential of LLM-Based ASR on Chinese Open-Source Datasets [22.29915616018026]
LLM(Large Language Models)は、様々なNLPタスクにおいて非並列の有効性を示す。
本研究の目的は,音声エンコーダ,LLM,プロジェクタモジュールの様々な構成の影響を評価することである。
本研究では,3段階の学習手法を導入し,モデルが聴覚情報とテキスト情報を整合させる能力を高めることを目的とした。
論文 参考訳(メタデータ) (2024-05-03T14:35:58Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
本研究は,オープンソースソフトウェアGreetlのハンスル(Hansl)という,econometricスクリプティング言語に焦点を当てたものである。
この結果から, LLMはグレタブルコードの記述, 理解, 改善, 文書化に有用なツールであることが示唆された。
論文 参考訳(メタデータ) (2023-07-24T17:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。