Mamba-PTQ: Outlier Channels in Recurrent Large Language Models
- URL: http://arxiv.org/abs/2407.12397v1
- Date: Wed, 17 Jul 2024 08:21:06 GMT
- Title: Mamba-PTQ: Outlier Channels in Recurrent Large Language Models
- Authors: Alessandro Pierro, Steven Abreu,
- Abstract summary: We show that Mamba models exhibit the same pattern of outlier channels observed in attention-based LLMs.
We show that the reason for the difficulty of quantizing SSMs is caused by activation outliers, similar to those observed in transformer-based LLMs.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern recurrent layers are emerging as a promising path toward edge deployment of foundation models, especially in the context of large language models (LLMs). Compressing the whole input sequence in a finite-dimensional representation enables recurrent layers to model long-range dependencies while maintaining a constant inference cost for each token and a fixed memory requirement. However, the practical deployment of LLMs in resource-limited environments often requires further model compression, such as quantization and pruning. While these techniques are well-established for attention-based models, their effects on recurrent layers remain underexplored. In this preliminary work, we focus on post-training quantization for recurrent LLMs and show that Mamba models exhibit the same pattern of outlier channels observed in attention-based LLMs. We show that the reason for the difficulty of quantizing SSMs is caused by activation outliers, similar to those observed in transformer-based LLMs. We report baseline results for post-training quantization of Mamba that do not take into account the activation outliers and suggest first steps for outlier-aware quantization.
Related papers
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - Scaling laws for post-training quantized large language models [41.78467383320145]
Generalization abilities of well-trained large language models (LLMs) are known to scale predictably as a function of model size.
The quality of LLMs after post-training compression remains highly unpredictable, often requiring case-by-case validation in practice.
arXiv Detail & Related papers (2024-10-15T23:34:22Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
arXiv Detail & Related papers (2024-07-26T15:32:21Z) - MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs [38.93090238335506]
Spurious bias, a tendency to use spurious correlations between non-essential input attributes and target variables for predictions, has revealed a severe pitfall in deep learning models trained on single modality data.
We introduce MM-SpuBench, a comprehensive visual question-answering (VQA) benchmark designed to evaluate MLLMs' reliance on nine distinct categories of spurious correlations.
Our findings illuminate the persistence of the reliance on spurious correlations from these models and underscore the urge for new methodologies to mitigate spurious biases.
arXiv Detail & Related papers (2024-06-24T20:29:16Z) - Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL [57.202733701029594]
Decision Mamba is a novel multi-grained state space model with a self-evolving policy learning strategy.
To mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization.
The policy evolves by using its own past knowledge to refine the suboptimal actions, thus enhancing its robustness on noisy demonstrations.
arXiv Detail & Related papers (2024-06-08T10:12:00Z) - CMamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting [18.50360049235537]
Mamba, a state space model, has emerged with robust sequence and feature mixing capabilities.
Capturing cross-channel dependencies is critical in enhancing performance of time series prediction.
We introduce a refined Mamba variant tailored for time series forecasting.
arXiv Detail & Related papers (2024-06-08T01:32:44Z) - Why Lift so Heavy? Slimming Large Language Models by Cutting Off the
Layers [2.1165011830664673]
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks.
The sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking.
We show that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks.
arXiv Detail & Related papers (2024-02-18T20:47:10Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.