Mamba-PTQ: Outlier Channels in Recurrent Large Language Models
- URL: http://arxiv.org/abs/2407.12397v1
- Date: Wed, 17 Jul 2024 08:21:06 GMT
- Title: Mamba-PTQ: Outlier Channels in Recurrent Large Language Models
- Authors: Alessandro Pierro, Steven Abreu,
- Abstract summary: We show that Mamba models exhibit the same pattern of outlier channels observed in attention-based LLMs.
We show that the reason for the difficulty of quantizing SSMs is caused by activation outliers, similar to those observed in transformer-based LLMs.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern recurrent layers are emerging as a promising path toward edge deployment of foundation models, especially in the context of large language models (LLMs). Compressing the whole input sequence in a finite-dimensional representation enables recurrent layers to model long-range dependencies while maintaining a constant inference cost for each token and a fixed memory requirement. However, the practical deployment of LLMs in resource-limited environments often requires further model compression, such as quantization and pruning. While these techniques are well-established for attention-based models, their effects on recurrent layers remain underexplored. In this preliminary work, we focus on post-training quantization for recurrent LLMs and show that Mamba models exhibit the same pattern of outlier channels observed in attention-based LLMs. We show that the reason for the difficulty of quantizing SSMs is caused by activation outliers, similar to those observed in transformer-based LLMs. We report baseline results for post-training quantization of Mamba that do not take into account the activation outliers and suggest first steps for outlier-aware quantization.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - MQuant: Unleashing the Inference Potential of Multimodal Large Language Models via Full Static Quantization [15.01214559812713]
MQuant is a post-training quantization framework designed to tackle the challenges of multimodal large language models (MLLMs)
On five mainstream MLLMs (including Qwen-VL, Mini-V, CogVLM2), MQuant under W4A8 achieves near-floating-point accuracy (1% degradation) while reducing inference latency by up to 30%.
arXiv Detail & Related papers (2025-02-01T13:08:02Z) - Scaling Laws for Post Training Quantized Large Language Models [41.78467383320145]
Generalization abilities of well-trained large language models (LLMs) are known to scale predictably as a function of model size.
The quality of LLMs after post-training compression remains highly unpredictable, often requiring case-by-case validation in practice.
arXiv Detail & Related papers (2024-10-15T23:34:22Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs [38.93090238335506]
Spurious bias, a tendency to use spurious correlations between non-essential input attributes and target variables for predictions, has revealed a severe pitfall in deep learning models trained on single modality data.
We introduce MM-SpuBench, a comprehensive visual question-answering (VQA) benchmark designed to evaluate MLLMs' reliance on nine distinct categories of spurious correlations.
Our findings illuminate the persistence of the reliance on spurious correlations from these models and underscore the urge for new methodologies to mitigate spurious biases.
arXiv Detail & Related papers (2024-06-24T20:29:16Z) - Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL [57.202733701029594]
We propose Decision Mamba, a novel multi-grained state space model (SSM) with a self-evolving policy learning strategy.
To address these challenges, we propose Decision Mamba, a novel multi-grained state space model (SSM) with a self-evolving policy learning strategy.
To mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization.
arXiv Detail & Related papers (2024-06-08T10:12:00Z) - CMamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting [18.50360049235537]
Mamba, a state space model, has emerged with robust sequence and feature mixing capabilities.
Capturing cross-channel dependencies is critical in enhancing performance of time series prediction.
We introduce a refined Mamba variant tailored for time series forecasting.
arXiv Detail & Related papers (2024-06-08T01:32:44Z) - Why Lift so Heavy? Slimming Large Language Models by Cutting Off the
Layers [2.1165011830664673]
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks.
The sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking.
We show that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks.
arXiv Detail & Related papers (2024-02-18T20:47:10Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning [70.48605869773814]
Catastrophic forgetting (CF) is a phenomenon that occurs in machine learning when a model forgets previously learned information.
This study empirically evaluates the forgetting phenomenon in large language models during continual instruction tuning.
arXiv Detail & Related papers (2023-08-17T02:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.