Universality class of a spinor Bose-Einstein condensate far from equilibrium
- URL: http://arxiv.org/abs/2303.05230v2
- Date: Fri, 03 Jan 2025 11:24:39 GMT
- Title: Universality class of a spinor Bose-Einstein condensate far from equilibrium
- Authors: SeungJung Huh, Koushik Mukherjee, Kiryang Kwon, Jihoon Seo, Simeon I. Mistakidis, H. R. Sadeghpour, Jae-yoon Choi,
- Abstract summary: We report on the classification of universal coarsening dynamics in a quenched two-dimensional spinor Bose gas.
Our results provide a categorization of the universality classes of far from equilibrium quantum dynamics based on symmetry properties of the system.
- Score: 0.0
- License:
- Abstract: Scale invariance and self-similarity in physics provide a unified framework to classify phases of matter and dynamical properties near equilibrium in both classical and quantum systems. This paradigm has been further extended to isolated many-body quantum systems driven far from equilibrium, where physical observables exhibit dynamical scaling with universal scaling exponents. Universal dynamics appear in a wide range of scenarios, including cosmology, quark-gluon matter, ultracold atoms, and quantum spin magnets. However, how universal dynamics depend on the symmetry of the underlying Hamiltonian in nonequilibrium systems remain an outstanding challenge. Here, we report on the classification of universal coarsening dynamics in a quenched two-dimensional ferromagnetic spinor Bose gas. We observe spatiotemporal scaling of spin correlation functions with distinguishable scaling exponents that characterize binary and diffusive fluids. The universality class of the coarsening dynamics is determined by the symmetry of the order parameter and the dynamics of the topological defects, such as domain walls and vortices. Our results provide a categorization of the universality classes of far from equilibrium quantum dynamics based on symmetry properties of the system.
Related papers
- Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos [44.99833362998488]
We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
arXiv Detail & Related papers (2024-10-21T10:56:49Z) - System Symmetry and the Classification of Out-of-Time-Ordered Correlator Dynamics in Quantum Chaos [1.534667887016089]
We study the universality of out-of-time-ordered correlator (OTOC) dynamics in quantum chaotic systems.
We show that ensemble-averaged OTOC dynamics exhibit distinct universal behaviors depending on system symmetry.
arXiv Detail & Related papers (2024-10-07T03:03:09Z) - Universal Stochastic Equations of Monitored Quantum Dynamics [4.794899293121226]
We derive the universal Fokker-Planck equations that govern the Gaussian time evolution of entire density-matrix spectra.
We identify the universal fluctuations of entropy in the chaotic regime, serving as a non-unitary counterpart of the universal conductance fluctuations in mesoscopic electronic transport phenomena.
arXiv Detail & Related papers (2024-08-30T02:24:54Z) - Emergent Universal Quench Dynamics in Randomly Interacting Spin Models [20.38924078291244]
We report the experimental observation of universal dynamics by monitoring the spin depolarization process in a solid-state NMR system.
We discover a remarkable phenomenon that these correlation functions obey a universal functional form.
Our observation demonstrates the existence of universality even in non-equilibrium dynamics at high temperatures.
arXiv Detail & Related papers (2024-06-11T18:00:10Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Mesoscopic fluctuations in entanglement dynamics [0.0]
We show that entanglement entropy variance obeys a universal scaling law, in each class, and the full distribution displays a sub-Gaussian upper and a sub-Gamma lower tail.
These statistics are independent of both the system's microscopic details and the choice of entanglement probes.
They have practical implications for controlling entanglement in mesoscopic devices.
arXiv Detail & Related papers (2023-05-17T05:43:40Z) - Universality of Bose-Einstein Condensation and Quenched Formation
Dynamics [0.0]
The emergence of macroscopic coherence in a many-body quantum system is a ubiquitous phenomenon across different physical systems and scales.
Characteristic examples include symmetry-breaking in the Kibble-Zurek mechanism, coarsening and phase-ordering kinetics, and universaltemporal scaling around non-thermal fixed points.
The Chapter concludes with a brief review of the potential relevance of some of these concepts in modelling the large-scale distribution of dark matter in the universe.
arXiv Detail & Related papers (2023-04-19T10:12:52Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.