Out-Of-Context Prompting Boosts Fairness and Robustness in Large Language Model Predictions
- URL: http://arxiv.org/abs/2406.07685v1
- Date: Tue, 11 Jun 2024 20:05:15 GMT
- Title: Out-Of-Context Prompting Boosts Fairness and Robustness in Large Language Model Predictions
- Authors: Leonardo Cotta, Chris J. Maddison,
- Abstract summary: We develop test-time strategies to improve Frontier Large Language Models' trustworthiness.
We leverage causality as a tool to formally encode two aspects of trustworthiness in LLMs: fairness and robustness.
We show that out-of-context prompting consistently improves the fairness and robustness of frontier LLMs.
- Score: 17.758735680493917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Frontier Large Language Models (LLMs) are increasingly being deployed for high-stakes decision-making. On the other hand, these models are still consistently making predictions that contradict users' or society's expectations, e.g., hallucinating, or discriminating. Thus, it is important that we develop test-time strategies to improve their trustworthiness. Inspired by prior work, we leverage causality as a tool to formally encode two aspects of trustworthiness in LLMs: fairness and robustness. Under this perspective, existing test-time solutions explicitly instructing the model to be fair or robust implicitly depend on the LLM's causal reasoning capabilities. In this work, we explore the opposite approach. Instead of explicitly asking the LLM for trustworthiness, we design prompts to encode the underlying causal inference algorithm that will, by construction, result in more trustworthy predictions. Concretely, we propose out-of-context prompting as a test-time solution to encourage fairness and robustness in LLMs. Out-of-context prompting leverages the user's prior knowledge of the task's causal model to apply (random) counterfactual transformations and improve the model's trustworthiness. Empirically, we show that out-of-context prompting consistently improves the fairness and robustness of frontier LLMs across five different benchmark datasets without requiring additional data, finetuning or pre-training.
Related papers
- Evaluating and Mitigating Social Bias for Large Language Models in Open-ended Settings [13.686732204665738]
We extend an existing BBQ dataset by incorporating fill-in-the-blank and short-answer question types.
Our finding reveals that LLMs produce responses that are more biased against certain protected attributes, like age and socio-economic status.
Our debiasing approach combined zero-shot, few-shot, and chain-of-thought could significantly reduce the level of bias to almost 0.
arXiv Detail & Related papers (2024-12-09T01:29:47Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
Large Language Models (LLMs) are being adopted across a wide range of tasks.
Recent research indicates that LLMs can harbor implicit biases even when they pass explicit bias evaluations.
This study highlights that newer or larger language models do not automatically exhibit reduced bias.
arXiv Detail & Related papers (2024-10-13T03:43:18Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Quantifying Prediction Consistency Under Model Multiplicity in Tabular LLMs [10.494477811252034]
Fine-tuning large language models can lead to textitfine-tuning multiplicity, where equally well-performing models make conflicting predictions on the same inputs.
This raises critical concerns about the robustness and reliability of Tabular LLMs.
This work proposes a novel metric to quantify the robustness of individual predictions without expensive model retraining.
arXiv Detail & Related papers (2024-07-04T22:22:09Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a method called Stratified Prediction-Powered Inference (StratPPI)
We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - Towards Understanding Task-agnostic Debiasing Through the Lenses of Intrinsic Bias and Forgetfulness [10.081447621656523]
The impact on language modeling ability can be alleviated given a high-quality and long-contextualized debiasing corpus.
The effectiveness of task-agnostic debiasing hinges on the quantitative bias level of both the task-specific data used for downstream applications and the debiased model.
We propose a novel framework which can Propagate Socially-fair Debiasing to Downstream Fine-tuning, ProSocialTuning.
arXiv Detail & Related papers (2024-06-06T15:11:11Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks.
Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs.
We show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform simple aggregation strategies.
arXiv Detail & Related papers (2024-04-15T21:02:48Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.