論文の概要: Using AI-Based Coding Assistants in Practice: State of Affairs, Perceptions, and Ways Forward
- arxiv url: http://arxiv.org/abs/2406.07765v1
- Date: Tue, 11 Jun 2024 23:10:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 20:56:21.811653
- Title: Using AI-Based Coding Assistants in Practice: State of Affairs, Perceptions, and Ways Forward
- Title(参考訳): AIベースのコーディングアシスタントの実践 - 現状, 知覚, 今後の展開
- Authors: Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, Iftekhar Ahmed,
- Abstract要約: 我々は、AIアシスタントの使用方法に関する大規模な調査を行った。
我々は5つの幅広い活動について481人のプログラマの意見を収集した。
その結果,AIアシスタントの利用状況は,活動やステージによって異なることがわかった。
- 参考スコア(独自算出の注目度): 9.177785129949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The last several years saw the emergence of AI assistants for code -- multi-purpose AI-based helpers in software engineering. Their quick development makes it necessary to better understand how specifically developers are using them, why they are not using them in certain parts of their development workflow, and what needs to be improved. In this work, we carried out a large-scale survey aimed at how AI assistants are used, focusing on specific software development activities and stages. We collected opinions of 481 programmers on five broad activities: (a) implementing new features, (b) writing tests, (c) bug triaging, (d) refactoring, and (e) writing natural-language artifacts, as well as their individual stages. Our results show that usage of AI assistants varies depending on activity and stage. For instance, developers find writing tests and natural-language artifacts to be the least enjoyable activities and want to delegate them the most, currently using AI assistants to generate tests and test data, as well as generating comments and docstrings most of all. This can be a good focus for features aimed to help developers right now. As for why developers do not use assistants, in addition to general things like trust and company policies, there are fixable issues that can serve as a guide for further research, e.g., the lack of project-size context, and lack of awareness about assistants. We believe that our comprehensive and specific results are especially needed now to steer active research toward where users actually need AI assistants.
- Abstract(参考訳): ここ数年、コードのためのAIアシスタント -- ソフトウェアエンジニアリングにおける多目的AIベースのヘルパー -- が出現した。
彼らの迅速な開発は、開発者がどのようにそれを使っているのか、なぜ開発ワークフローの特定の部分でそれを使用していないのか、何を改善する必要があるのかをよりよく理解する必要がある。
本研究では,AIアシスタントの利用状況に関する大規模調査を行い,特定のソフトウェア開発活動とステージに着目した。
我々は5つの幅広い活動について481人のプログラマの意見を集めた。
(a)新機能の実装
b) テストを書くこと
(c)バグトリアージ
(d)リファクタリング,及び
(e)自然言語のアーティファクトや個々のステージを書くこと。
その結果,AIアシスタントの利用状況は,活動やステージによって異なることがわかった。
例えば、開発者は、テストや自然言語のアーティファクトを最も楽しいアクティビティとして記述し、最も多くを委譲したいと考えています。
これは、現在開発者を支援する機能にとって、良い焦点になるかもしれません。
開発者がアシスタントを使用しない理由については、信頼や企業の方針といった一般的なことに加えて、さらなる研究のガイドとなる固定可能な問題、例えば、プロジェクトサイズのコンテキストの欠如、アシスタントに対する認識の欠如などがあります。
私たちは、ユーザーが実際にAIアシスタントを必要としている場所について、アクティブな研究を行うために、包括的で具体的な結果が特に必要であると考えています。
関連論文リスト
- Does Co-Development with AI Assistants Lead to More Maintainable Code? A Registered Report [6.7428644467224]
本研究は,AIアシスタントがソフトウェア保守性に与える影響を検討することを目的とする。
フェーズ1では、開発者はAIアシスタントの助けなしに、Javaプロジェクトに新しい機能を追加する。
ランダム化されたコントロールされた試行のフェーズ2では、さまざまな開発者がランダムフェーズ1プロジェクトを進化させ、AIアシスタントなしで作業する。
論文 参考訳(メタデータ) (2024-08-20T11:48:42Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Generating Java Methods: An Empirical Assessment of Four AI-Based Code
Assistants [5.32539007352208]
私たちは、人気のあるAIベースのコードアシスタントであるGitHub Copilot、Tabnine、ChatGPT、Google Bardの4つの有効性を評価します。
その結果、Copilotは他のテクニックよりも正確であることが多いが、他のアプローチによって完全に仮定されるアシスタントは存在しないことが判明した。
論文 参考訳(メタデータ) (2024-02-13T12:59:20Z) - Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes [11.520721038793285]
この研究は、コンテキスト化されたコーディングAIアシスタントであるStackSpot AIを制御された環境で使用した62人の参加者の初期体験に焦点を当てる。
アシスタントの使用は、大幅な時間を節約し、ドキュメントへのアクセスを容易にし、内部APIの正確なコードを生成する結果となった。
コーディングアシスタントが、複雑なコードを扱う際の変数応答や制限と同様に、よりコンテキスト情報にアクセスできるようにするために必要な知識ソースに関連する課題が観察された。
論文 参考訳(メタデータ) (2023-11-30T10:52:28Z) - The Future of AI-Assisted Writing [0.0]
我々は、情報検索レンズ(プル・アンド・プッシュ)を用いて、そのようなツールの比較ユーザスタディを行う。
我々の研究結果によると、ユーザーは執筆におけるAIのシームレスな支援を歓迎している。
ユーザはAI支援の書き込みツールとのコラボレーションも楽しんだが、オーナシップの欠如を感じなかった。
論文 参考訳(メタデータ) (2023-06-29T02:46:45Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
業界と学界の18人のデータワーカーにインタビューして、AIとのコラボレーションの場所と方法を聞いた。
驚いたことに、参加者はAIとのコラボレーションに興奮を見せたが、彼らの多くは反感を表明し、曖昧な理由を指摘した。
論文 参考訳(メタデータ) (2023-04-17T15:30:05Z) - A Large-Scale Survey on the Usability of AI Programming Assistants:
Successes and Challenges [23.467373994306524]
実際には、開発者はAIプログラミングアシスタントの最初の提案を高い頻度で受け入れない。
これらのツールを使用して開発者のプラクティスを理解するため、多数の開発者を対象に調査を実施しました。
開発者がAIプログラミングアシスタントを使用する動機は、開発者がキーストロークを減らしたり、プログラミングタスクを素早く終了したり、構文をリコールするのに役立つためである。
また、開発者がこれらのツールを使用しない最も重要な理由は、これらのツールが特定の機能的あるいは非機能的要件に対処するコードを出力していないためです。
論文 参考訳(メタデータ) (2023-03-30T03:21:53Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
生成AI(AIGC、つまりAI生成コンテンツ)は、テキスト、画像、その他を分析、作成する能力により、あらゆる場所で話題を呼んだ。
純粋な分析から創造へと移行するAIの時代において、ChatGPTは最新の言語モデルであるGPT-4とともに、多くのAIGCタスクからなるツールである。
本研究は,テキスト,画像,ビデオ,3Dコンテンツなど,出力タイプに基づいたAIGCタスクの技術的開発に焦点を当てている。
論文 参考訳(メタデータ) (2023-03-21T10:09:47Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。