論文の概要: Using AI-Based Coding Assistants in Practice: State of Affairs, Perceptions, and Ways Forward
- arxiv url: http://arxiv.org/abs/2406.07765v2
- Date: Thu, 07 Nov 2024 11:09:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:08.678893
- Title: Using AI-Based Coding Assistants in Practice: State of Affairs, Perceptions, and Ways Forward
- Title(参考訳): AIベースのコーディングアシスタントの実践 - 現状, 知覚, 今後の展開
- Authors: Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, Iftekhar Ahmed,
- Abstract要約: 私たちは、開発者がAIアシスタントをどのように使っているのかをよりよく理解することを目指しています。
我々は、AIアシスタントの使用方法に関する大規模な調査を行った。
- 参考スコア(独自算出の注目度): 9.177785129949
- License:
- Abstract: Context. The last several years saw the emergence of AI assistants for code - multi-purpose AI-based helpers in software engineering. As they become omnipresent in all aspects of software development, it becomes critical to understand their usage patterns. Objective. We aim to better understand how specifically developers are using AI assistants, why they are not using them in certain parts of their development workflow, and what needs to be improved in the future. Methods. In this work, we carried out a large-scale survey aimed at how AI assistants are used, focusing on specific software development activities and stages. We collected opinions of 481 programmers on five broad activities: (a) implementing new features, (b) writing tests, (c) bug triaging, (d) refactoring, and (e) writing natural-language artifacts, as well as their individual stages. Results. Our results provide a novel comparison of different stages where AI assistants are used that is both comprehensive and detailed. It highlights specific activities that developers find less enjoyable and want to delegate to an AI assistant, e.g., writing tests and natural-language artifacts. We also determine more granular stages where AI assistants are used, such as generating tests and generating docstrings, as well as less studied parts of the workflow, such as generating test data. Among the reasons for not using assistants, there are general aspects like trust and company policies, as well as more concrete issues like the lack of project-size context, which can be the focus of the future research. Conclusion. The provided analysis highlights stages of software development that developers want to delegate and that are already popular for using AI assistants, which can be a good focus for features aimed to help developers right now. The main reasons for not using AI assistants can serve as a guideline for future work.
- Abstract(参考訳): コンテキスト。
ここ数年、コードのためのAIアシスタント - ソフトウェアエンジニアリングにおける多目的AIベースのヘルパー - が出現した。
ソフトウェア開発のあらゆる面において完全に表現されるようになると、それらの利用パターンを理解することが重要になる。
目的。
私たちは、開発者がAIアシスタントをどのように使っているのか、なぜ開発ワークフローの特定の部分にAIを使用していないのか、将来何を改善する必要があるのか、をよりよく理解することを目的としています。
メソッド。
本研究では,AIアシスタントの利用状況に関する大規模調査を行い,特定のソフトウェア開発活動とステージに着目した。
我々は5つの幅広い活動について481人のプログラマの意見を集めた。
(a)新機能の実装
b) テストを書くこと
(c)バグトリアージ
(d)リファクタリング,及び
(e)自然言語のアーティファクトや個々のステージを書くこと。
結果。
以上の結果から,AIアシスタントを包括的かつ詳細な方法で使用する,さまざまな段階の新たな比較結果が得られた。
開発者が楽しそうに感じ、AIアシスタントに委譲したい、例えば、テストや自然言語のアーティファクトを書くなど、特定のアクティビティを強調します。
また、テスト生成やドクストリングの生成、テストデータ生成などのワークフローのあまり研究されていない部分など、AIアシスタントが使用される詳細なステージも決定します。
アシスタントを使わない理由には、信頼や企業の方針といった一般的な側面や、将来の研究の焦点となるプロジェクトサイズのコンテキストの欠如など、より具体的な問題があります。
結論。
提供されている分析は、開発者が委譲したい、そしてAIアシスタントの使用にすでに人気があるソフトウェア開発のステージを強調している。
AIアシスタントを使用しない主な理由は、将来の作業のガイドラインとして機能する可能性がある。
関連論文リスト
- Does Co-Development with AI Assistants Lead to More Maintainable Code? A Registered Report [6.7428644467224]
本研究は,AIアシスタントがソフトウェア保守性に与える影響を検討することを目的とする。
フェーズ1では、開発者はAIアシスタントの助けなしに、Javaプロジェクトに新しい機能を追加する。
ランダム化されたコントロールされた試行のフェーズ2では、さまざまな開発者がランダムフェーズ1プロジェクトを進化させ、AIアシスタントなしで作業する。
論文 参考訳(メタデータ) (2024-08-20T11:48:42Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Generating Java Methods: An Empirical Assessment of Four AI-Based Code
Assistants [5.32539007352208]
私たちは、人気のあるAIベースのコードアシスタントであるGitHub Copilot、Tabnine、ChatGPT、Google Bardの4つの有効性を評価します。
その結果、Copilotは他のテクニックよりも正確であることが多いが、他のアプローチによって完全に仮定されるアシスタントは存在しないことが判明した。
論文 参考訳(メタデータ) (2024-02-13T12:59:20Z) - Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes [11.520721038793285]
この研究は、コンテキスト化されたコーディングAIアシスタントであるStackSpot AIを制御された環境で使用した62人の参加者の初期体験に焦点を当てる。
アシスタントの使用は、大幅な時間を節約し、ドキュメントへのアクセスを容易にし、内部APIの正確なコードを生成する結果となった。
コーディングアシスタントが、複雑なコードを扱う際の変数応答や制限と同様に、よりコンテキスト情報にアクセスできるようにするために必要な知識ソースに関連する課題が観察された。
論文 参考訳(メタデータ) (2023-11-30T10:52:28Z) - The Future of AI-Assisted Writing [0.0]
我々は、情報検索レンズ(プル・アンド・プッシュ)を用いて、そのようなツールの比較ユーザスタディを行う。
我々の研究結果によると、ユーザーは執筆におけるAIのシームレスな支援を歓迎している。
ユーザはAI支援の書き込みツールとのコラボレーションも楽しんだが、オーナシップの欠如を感じなかった。
論文 参考訳(メタデータ) (2023-06-29T02:46:45Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
業界と学界の18人のデータワーカーにインタビューして、AIとのコラボレーションの場所と方法を聞いた。
驚いたことに、参加者はAIとのコラボレーションに興奮を見せたが、彼らの多くは反感を表明し、曖昧な理由を指摘した。
論文 参考訳(メタデータ) (2023-04-17T15:30:05Z) - A Large-Scale Survey on the Usability of AI Programming Assistants:
Successes and Challenges [23.467373994306524]
実際には、開発者はAIプログラミングアシスタントの最初の提案を高い頻度で受け入れない。
これらのツールを使用して開発者のプラクティスを理解するため、多数の開発者を対象に調査を実施しました。
開発者がAIプログラミングアシスタントを使用する動機は、開発者がキーストロークを減らしたり、プログラミングタスクを素早く終了したり、構文をリコールするのに役立つためである。
また、開発者がこれらのツールを使用しない最も重要な理由は、これらのツールが特定の機能的あるいは非機能的要件に対処するコードを出力していないためです。
論文 参考訳(メタデータ) (2023-03-30T03:21:53Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
生成AI(AIGC、つまりAI生成コンテンツ)は、テキスト、画像、その他を分析、作成する能力により、あらゆる場所で話題を呼んだ。
純粋な分析から創造へと移行するAIの時代において、ChatGPTは最新の言語モデルであるGPT-4とともに、多くのAIGCタスクからなるツールである。
本研究は,テキスト,画像,ビデオ,3Dコンテンツなど,出力タイプに基づいたAIGCタスクの技術的開発に焦点を当てている。
論文 参考訳(メタデータ) (2023-03-21T10:09:47Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。