Field Test of Quantum Key Distribution with High Key Creation Efficiency
- URL: http://arxiv.org/abs/2406.07786v1
- Date: Wed, 12 Jun 2024 00:42:43 GMT
- Title: Field Test of Quantum Key Distribution with High Key Creation Efficiency
- Authors: Yung-Cheng Kao, Sheng-Hsuan Huang, Chin-Hsuan Chang, Chih-Hsiang Wu, Shih-Hsien Chu, Jian Jiang, An-Chi Zhang, Sheng-Yao Huang, Jhih-Heng Yan, Kai-Ming Feng, Chih-Sung Chuu,
- Abstract summary: We develop a miniature 1550-nm single-photon source to generate narrowband single photon in 50 time bins.
By utilizing these single photons in the field test, we demonstrate the differential-phase-shift QKD with a key creation efficiency of 97%.
- Score: 2.647074888050002
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantumkey distribution (QKD) promises unconditional security for communication. However, the random choices of the measurement basis in QKD usually result in low key creation efficiency. This drawback is overcome in the differential-phase-shift QKD, provided that each photon can be prepared in a large number of time bins with a proper waveform. In this work we develop a miniature 1550-nm single-photon source to generate narrowband single photon in 50 time bins with a nearly optimal waveform for achieving unity key creation efficiency. By utilizing these single photons in the field test, we demonstrate the differential-phase-shift QKD with a key creation efficiency of 97%. Our work shows that the practical QKD can benefit from the narrowband single photons with controllable waveforms.
Related papers
- Metropolitan quantum key distribution using a GaN-based room-temperature telecommunication single-photon source [54.32714639668751]
Single-photon sources (SPS) hold the potential to enhance the performance of quantum key distribution (QKD)
We have successfully demonstrated QKD using a room-temperature SPS at telecommunication wavelength.
arXiv Detail & Related papers (2024-09-27T07:35:51Z) - Experimental single-photon quantum key distribution surpassing the fundamental coherent-state rate limit [11.795169912821704]
Single-photon sources are essential for quantum networks, enabling applications ranging from quantum key distribution (QKD) to the burgeoning quantum internet.
Here, we report high-rate QKD using a high-efficiency single-photon source, enabling an SKR transcending the fundamental rate limit of coherent light.
Our findings conclusively demonstrate the superior performance of nanotechnology-based single-photon sources over coherent light for QKD applications, marking a pivotal stride towards the realization of a global quantum internet.
arXiv Detail & Related papers (2024-06-04T07:28:15Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Photonic verification of device-independent quantum key distribution
against collective attacks [15.343274274430438]
We develop a high-quality polarization-entangled photon source achieving a state-of-the-art detection efficiency about 87.5%.
Together, we show that the measured quantum correlations are strong enough to ensure a positive key rate under the fiber length up to 220 m.
arXiv Detail & Related papers (2021-10-04T14:38:06Z) - Stable Polarization Entanglement based Quantum Key Distribution over
Metropolitan Fibre Network [55.41644538483948]
We demonstrate a quantum key distribution implementation over deployed dark telecom fibers with polarisation-entangled photons generated at the O-band.
One of the photons in the pairs are propagated through 10km of deployed fiber while the others are detected locally.
This ensures continuous and stable QKD operation with an average QBER of 6.4% and a final key rate of 109 bits/s.
arXiv Detail & Related papers (2020-07-04T02:36:57Z) - Experimentally optimizing QKD rates via nonlocal dispersion compensation [0.0]
Quantum key distribution (QKD) enables unconditionally secure communication guaranteed by the laws of physics.
We present an effective and easy-to-implement method to overcome chromatic dispersion effects.
We experimentally show an increase in key rate from 6.1 to 228.3 bits/s over 6.46 km of telecom fiber.
arXiv Detail & Related papers (2020-07-01T10:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.