Are Objective Explanatory Evaluation metrics Trustworthy? An Adversarial Analysis
- URL: http://arxiv.org/abs/2406.07820v1
- Date: Wed, 12 Jun 2024 02:39:46 GMT
- Title: Are Objective Explanatory Evaluation metrics Trustworthy? An Adversarial Analysis
- Authors: Prithwijit Chowdhury, Mohit Prabhushankar, Ghassan AlRegib, Mohamed Deriche,
- Abstract summary: The aim of the paper is to come up with a novel explanatory technique called SHifted Adversaries using Pixel Elimination.
We show that SHAPE is, infact, an adversarial explanation that fools causal metrics that are employed to measure the robustness and reliability of popular importance based visual XAI methods.
- Score: 12.921307214813357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable AI (XAI) has revolutionized the field of deep learning by empowering users to have more trust in neural network models. The field of XAI allows users to probe the inner workings of these algorithms to elucidate their decision-making processes. The rise in popularity of XAI has led to the advent of different strategies to produce explanations, all of which only occasionally agree. Thus several objective evaluation metrics have been devised to decide which of these modules give the best explanation for specific scenarios. The goal of the paper is twofold: (i) we employ the notions of necessity and sufficiency from causal literature to come up with a novel explanatory technique called SHifted Adversaries using Pixel Elimination(SHAPE) which satisfies all the theoretical and mathematical criteria of being a valid explanation, (ii) we show that SHAPE is, infact, an adversarial explanation that fools causal metrics that are employed to measure the robustness and reliability of popular importance based visual XAI methods. Our analysis shows that SHAPE outperforms popular explanatory techniques like GradCAM and GradCAM++ in these tests and is comparable to RISE, raising questions about the sanity of these metrics and the need for human involvement for an overall better evaluation.
Related papers
- Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
The number and complexity of personalised and user-centred approaches to XAI have rapidly grown in recent years.
It emerged that user-centred approaches to XAI positively affect the interaction between users and systems.
We propose an assessment task to objectively and quantitatively measure the goodness of XAI systems.
arXiv Detail & Related papers (2023-12-07T15:49:39Z) - Precise Benchmarking of Explainable AI Attribution Methods [0.0]
We propose a novel evaluation approach for benchmarking state-of-the-art XAI attribution methods.
Our proposal consists of a synthetic classification model accompanied by its derived ground truth explanations.
Our experimental results provide novel insights into the performance of Guided-Backprop and Smoothgrad XAI methods.
arXiv Detail & Related papers (2023-08-06T17:03:32Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - An Experimental Investigation into the Evaluation of Explainability
Methods [60.54170260771932]
This work compares 14 different metrics when applied to nine state-of-the-art XAI methods and three dummy methods (e.g., random saliency maps) used as references.
Experimental results show which of these metrics produces highly correlated results, indicating potential redundancy.
arXiv Detail & Related papers (2023-05-25T08:07:07Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
This work presents an evaluation of Machine Unlearning algorithms based on uncertainty.
This is the first definition of a general evaluation of our best knowledge.
arXiv Detail & Related papers (2022-08-23T09:37:31Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
A lack of consensus on how to evaluate explainable AI (XAI) hinders the advancement of the field.
We argue that one way to close the gap is to develop evaluation methods that account for different user requirements.
arXiv Detail & Related papers (2022-06-22T05:17:33Z) - Rational Shapley Values [0.0]
Most popular tools for post-hoc explainable artificial intelligence (XAI) are either insensitive to context or difficult to summarize.
I introduce emphrational Shapley values, a novel XAI method that synthesizes and extends these seemingly incompatible approaches.
I leverage tools from decision theory and causal modeling to formalize and implement a pragmatic approach that resolves a number of known challenges in XAI.
arXiv Detail & Related papers (2021-06-18T15:45:21Z) - A Comparative Approach to Explainable Artificial Intelligence Methods in
Application to High-Dimensional Electronic Health Records: Examining the
Usability of XAI [0.0]
XAI aims to produce a demonstrative factor of trust, which for human subjects is achieved through communicative means.
The ideology behind trusting a machine to tend towards the livelihood of a human poses an ethical conundrum.
XAI methods produce visualization of the feature contribution towards a given models output on both a local and global level.
arXiv Detail & Related papers (2021-03-08T18:15:52Z) - Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI [12.680653816836541]
We propose a ground truth based evaluation framework for XAI methods based on the CLEVR visual question answering task.
Our framework provides a (1) selective, (2) controlled and (3) realistic testbed for the evaluation of neural network explanations.
arXiv Detail & Related papers (2020-03-16T14:43:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.