Rational Shapley Values
- URL: http://arxiv.org/abs/2106.10191v1
- Date: Fri, 18 Jun 2021 15:45:21 GMT
- Title: Rational Shapley Values
- Authors: David S. Watson
- Abstract summary: Most popular tools for post-hoc explainable artificial intelligence (XAI) are either insensitive to context or difficult to summarize.
I introduce emphrational Shapley values, a novel XAI method that synthesizes and extends these seemingly incompatible approaches.
I leverage tools from decision theory and causal modeling to formalize and implement a pragmatic approach that resolves a number of known challenges in XAI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explaining the predictions of opaque machine learning algorithms is an
important and challenging task, especially as complex models are increasingly
used to assist in high-stakes decisions such as those arising in healthcare and
finance. Most popular tools for post-hoc explainable artificial intelligence
(XAI) are either insensitive to context (e.g., feature attributions) or
difficult to summarize (e.g., counterfactuals). In this paper, I introduce
\emph{rational Shapley values}, a novel XAI method that synthesizes and extends
these seemingly incompatible approaches in a rigorous, flexible manner. I
leverage tools from decision theory and causal modeling to formalize and
implement a pragmatic approach that resolves a number of known challenges in
XAI. By pairing the distribution of random variables with the appropriate
reference class for a given explanation task, I illustrate through theory and
experiments how user goals and knowledge can inform and constrain the solution
set in an iterative fashion. The method compares favorably to state of the art
XAI tools in a range of quantitative and qualitative comparisons.
Related papers
- Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
Inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches.
We propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap)
We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold.
arXiv Detail & Related papers (2024-05-30T16:04:35Z) - XAI-TRIS: Non-linear image benchmarks to quantify false positive
post-hoc attribution of feature importance [1.3958169829527285]
A lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn from the results of a given XAI method.
This means that challenging non-linear problems, typically solved by deep neural networks, presently lack appropriate remedies.
We show that popular XAI methods are often unable to significantly outperform random performance baselines and edge detection methods.
arXiv Detail & Related papers (2023-06-22T11:31:11Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Theoretical Behavior of XAI Methods in the Presence of Suppressor
Variables [0.8602553195689513]
In recent years, the community of 'explainable artificial intelligence' (XAI) has created a vast body of methods to bridge a perceived gap between model 'complexity' and 'interpretability'
We show that the majority of the studied approaches will attribute non-zero importance to a non-class-related suppressor feature in the presence of correlated noise.
arXiv Detail & Related papers (2023-06-02T11:41:19Z) - Characterizing the contribution of dependent features in XAI methods [6.990173577370281]
We propose a proxy that modifies the outcome of any XAI feature ranking method allowing to account for the dependency among the predictors.
The proposed approach has the advantage of being model-agnostic as well as simple to calculate the impact of each predictor in the model in presence of collinearity.
arXiv Detail & Related papers (2023-04-04T11:25:57Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Optimizing Explanations by Network Canonization and Hyperparameter
Search [74.76732413972005]
Rule-based and modified backpropagation XAI approaches often face challenges when being applied to modern model architectures.
Model canonization is the process of re-structuring the model to disregard problematic components without changing the underlying function.
In this work, we propose canonizations for currently relevant model blocks applicable to popular deep neural network architectures.
arXiv Detail & Related papers (2022-11-30T17:17:55Z) - Explanation-by-Example Based on Item Response Theory [0.0]
This research explores the Item Response Theory (IRT) as a tool to explaining the models and measuring the level of reliability of the Explanation-by-Example approach.
From the test set, 83.8% of the errors are from instances in which the IRT points out the model as unreliable.
arXiv Detail & Related papers (2022-10-04T14:36:33Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Collective eXplainable AI: Explaining Cooperative Strategies and Agent
Contribution in Multiagent Reinforcement Learning with Shapley Values [68.8204255655161]
This study proposes a novel approach to explain cooperative strategies in multiagent RL using Shapley values.
Results could have implications for non-discriminatory decision making, ethical and responsible AI-derived decisions or policy making under fairness constraints.
arXiv Detail & Related papers (2021-10-04T10:28:57Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.