論文の概要: Finite Time Analysis of Temporal Difference Learning for Mean-Variance in a Discounted MDP
- arxiv url: http://arxiv.org/abs/2406.07892v1
- Date: Wed, 12 Jun 2024 05:49:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 18:15:17.158297
- Title: Finite Time Analysis of Temporal Difference Learning for Mean-Variance in a Discounted MDP
- Title(参考訳): 分散MDPにおける時間差分学習の時間差解析
- Authors: Tejaram Sangadi, L. A. Prashanth, Krishna Jagannathan,
- Abstract要約: 割引報酬マルコフ決定プロセスにおける分散政策評価の問題点を考察する。
本稿では,線形関数近似(LFA)を用いた時間差分型学習アルゴリズムについて述べる。
平均二乗の意味で(i) を保持する有限標本境界と、(ii) テールイテレート平均化を用いる場合の高い確率を導出する。
- 参考スコア(独自算出の注目度): 1.0923877073891446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by risk-sensitive reinforcement learning scenarios, we consider the problem of policy evaluation for variance in a discounted reward Markov decision process (MDP). For this problem, a temporal difference (TD) type learning algorithm with linear function approximation (LFA) exists in the literature, though only asymptotic guarantees are available for this algorithm. We derive finite sample bounds that hold (i) in the mean-squared sense; and (ii) with high probability, when tail iterate averaging is employed with/without regularization. Our bounds exhibit exponential decay for the initial error, while the overall bound is $O(1/t)$, where $t$ is the number of update iterations of the TD algorithm. Further, the bound for the regularized TD variant is for a universal step size. Our bounds open avenues for analysis of actor-critic algorithms for mean-variance optimization in a discounted MDP.
- Abstract(参考訳): リスクに敏感な強化学習シナリオを前提として,報酬の割引決定プロセス(MDP)における分散に対する政策評価の問題点を考察する。
この問題に対して,線形関数近似(LFA)を用いた時間差(TD)型学習アルゴリズムが文献に存在するが,漸近的な保証しか得られない。
保持する有限標本境界を導出する
(一)平均二乗の意味で、及び
(二) 尾回し平均化を正則化しない場合に高い確率で行うこと。
我々のバウンダリは初期誤差に対して指数関数的減衰を示し、全体のバウンダリは$O(1/t)$であり、$t$はTDアルゴリズムの更新繰り返しの数である。
さらに、正規化されたTD不変量に対する有界は普遍的なステップサイズである。
割引MDPにおける平均分散最適化のためのアクター・クリティカル・アルゴリズムの解析のためのバウンダリを開放する。
関連論文リスト
- Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability [17.771354881467435]
一般化された, インスタンスに依存しないステップサイズを持つ単純なアルゴリズムは, ほぼ最適分散とバイアス項を得るのに十分であることを示す。
本手法は, 線形近似のための洗練された誤差境界と, ランダム行列の積に対する新しい安定性結果に基づく。
論文 参考訳(メタデータ) (2023-10-22T12:37:25Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
本稿では,不整合雑音を持つ線形帯域に対する計算効率のよい最初のアルゴリズムを提案する。
我々のアルゴリズムは未知のノイズの分散に適応し、$tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regretを達成する。
また、強化学習において、線形混合マルコフ決定過程(MDP)に対する分散適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-21T00:17:24Z) - Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both
Worlds in Stochastic and Deterministic Environments [48.96971760679639]
マルコフ決定過程(MDP)の分散依存的後悔境界について検討する。
環境の微細な分散特性を特徴付けるための2つの新しい環境規範を提案する。
モデルに基づく手法では、MVPアルゴリズムの変種を設計する。
特に、この境界は極小かつ決定論的 MDP に対して同時に最適である。
論文 参考訳(メタデータ) (2023-01-31T06:54:06Z) - Finite time analysis of temporal difference learning with linear
function approximation: Tail averaging and regularisation [44.27439128304058]
そこで本研究では,TD学習アルゴリズムの時間的有限性について検討した。
ステップサイズ選択の下で、テール平均TDのパラメータ誤差に基づいて有限時間境界を導出する。
論文 参考訳(メタデータ) (2022-10-12T04:37:54Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Variance Penalized On-Policy and Off-Policy Actor-Critic [60.06593931848165]
本稿では,平均値と変動値の両方を含むパフォーマンス基準を最適化する,オン・ポリティィおよびオフ・ポリティィ・アクター・クリティカルなアルゴリズムを提案する。
提案手法は, アクタ批判的かつ事前の分散-ペナライゼーションベースラインに匹敵するだけでなく, リターンのばらつきが低いトラジェクトリも生成する。
論文 参考訳(メタデータ) (2021-02-03T10:06:16Z) - Simple and optimal methods for stochastic variational inequalities, II:
Markovian noise and policy evaluation in reinforcement learning [9.359939442911127]
本稿ではマルコフ雑音下での変分不等式(VI)のリセットに着目する。
我々のアルゴリズム開発における顕著な応用は、強化学習における政策評価問題である。
論文 参考訳(メタデータ) (2020-11-15T04:05:22Z) - Variance-Reduced Off-Policy TDC Learning: Non-Asymptotic Convergence
Analysis [27.679514676804057]
オフ・ポリシー・セッティングにおける2つの時間スケールTDCアルゴリズムの分散化手法を開発した。
実験により,提案した分散還元型TDCは,従来のTDCと分散還元型TDよりも収束誤差が小さいことを示した。
論文 参考訳(メタデータ) (2020-10-26T01:33:05Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
我々は、割引決定過程における政策評価の問題に対処し、生成モデルの下で、ll_infty$errorに対するマルコフに依存した保証を提供する。
我々は、ポリシー評価のために、局所ミニマックス下限の両漸近バージョンと非漸近バージョンを確立し、アルゴリズムを比較するためのインスタンス依存ベースラインを提供する。
論文 参考訳(メタデータ) (2020-03-16T17:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。